Skip to main content
Log in

An asymptotic finite plane deformation analysis of the elastostatic fields at a crack tip in the framework of hyperelastic, isotropic, and nearly incompressible neo-Hookean materials under mode-I loading

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, stress and displacement fields were computed around a crack tip in the case of nearly incompressible and isotropic neo-Hookean material. The constitutive equation was linearized, so that the Cauchy stress tensor could be written as a sum of two components: the linear response in term of elastic Hooke’s law and the nonlinear one. Based on this decomposition, an asymptotic analysis has been developed, the fields of linear elastic fracture mechanics (LEFM-theory) are the zero-order terms of the asymptotic expansion. The validity of the proposed theory has been checked in the case of a mode-I crack problem. A numerical model was constructed using a finite element method. It has shown that the computed fields arising from this theory are qualitatively in agreement with those of the finite element simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mzabi, S.: Caractérisation et analyse des mécanismes defracture en fatigue des élastomeres chargés. Paris 6 (2010)

  2. Williams, M.L.: On the stress distribution at the base of a stationary crack. ASME J. Appl. Mech. 24, 109–114 (1957)

    MathSciNet  MATH  Google Scholar 

  3. Muskhelishvili, N.I.: Certain Fundamental Problems of the Mathematical Theory of Elasticity. Izd-vo Nauka, Moscow (1966)

    MATH  Google Scholar 

  4. Sih, G., Chen, E.: Cracks moving at constant velocity and acceleration. In: Mechanics of Fracture 4: Elastodynamic Crack Problems, pp. 59–117 (1977)

  5. Hills, D.A., Kelly, P., Dai, D., Korsunsky, A.: Solution of Crack Problems: The Distributed Dislocation Technique, vol. 44. Springer, Berlin (2013)

    MATH  Google Scholar 

  6. Monfared, M., Pourseifi, M., Bagheri, R.: Computation of mixed mode stress intensity factors for multiple axisymmetric cracks in an FGM medium under transient loading. Int. J. Solids Struct. 158, 220–231 (2019)

    Article  Google Scholar 

  7. Monfared, M., Bagheri, R.: Multiple interacting arbitrary shaped cracks in an FGM plane. Theor. Appl. Fract. Mech. 86, 161–170 (2016)

    Article  Google Scholar 

  8. Monfared, M., Ayatollahi, M., Bagheri, R.: In-plane stress analysis of dissimilar materials with multiple interface cracks. Appl. Math. Modell. 40(19–20), 8464–8474 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bagheri, R., Monfared, M.: Magneto-electro-elastic analysis of a strip containing multiple embedded and edge cracks under transient loading. Acta Mech. 229(12), 4895–4913 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rivlin, R., Thomas, A.G.: Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci. A: Polym. Chem. 10(3), 291–318 (1953)

    Google Scholar 

  11. Griffith, A.A.: The phenomena of flow and rupture in solids. Philos. Trans. R. Soc. Lond. Ser. A 221, 163–198 (1920)

    Google Scholar 

  12. Aït-Bachir, M., Mars, W., Verron, E.: Energy release rate of small cracks in hyperelastic materials. Int. J. Non Linear Mech. 47(4), 22–29 (2012)

    Article  Google Scholar 

  13. Eshelby, J.: The elastic energy-momentum tensor. J. Elast. 5(3–4), 321–335 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hamdi, A., Hocine, N.A., Abdelaziz, M.N., Benseddiq, N.: Fracture of elastomers under static mixed mode: the strain-energy-density factor. Int. J. Fract. 144(2), 65–75 (2007)

    Article  Google Scholar 

  15. Sih, G.C.: Strain-energy-density factor applied to mixed mode crack problems. Int. J. Fract. 10(3), 305–321 (1974)

    Article  Google Scholar 

  16. Legrain, G., Moes, N., Verron, E.: Stress analysis around crack tips in finite strain problems using the extended finite element method. Int. J. Numer. Methods Eng. 63(2), 290–314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Begley, M.R., Creton, C., McMeeking, R.M.: The elastostatic plane strain mode I crack tip stress and displacement fields in a generalized linear neo-Hookean elastomer. J. Mech. Phys. Solids 84, 21–38 (2015)

    Article  MathSciNet  Google Scholar 

  18. Wong, F.S., Shield, R.T.: Large plane deformations of thin elastic sheets of neo-Hookean material. Zeitschrift für angewandte Mathematik und Physik ZAMP 20(2), 176–199 (1969)

    Article  MATH  Google Scholar 

  19. Knowles, J.K.: The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. Int. J. Fract. 13(5), 611–639 (1977)

    Article  MathSciNet  Google Scholar 

  20. Stephenson, R.A.: The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials. J. Elast. 12(1), 65–99 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Knowles, J.K., Sternberg, E.: Large deformations near a tip of an interface-crack between two neo-Hookean sheets. J. Elast. 13(3), 257–293 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Geubelle, P.H., Knauss, W.G.: Finite strains at the tip of a crack in a sheet of hyperelastic material: I. Homogeneous case. J. Elast. 35(1–3), 61–98 (1994)

    Article  MATH  Google Scholar 

  23. Tarantino, A.M.: Thin hyperelastic sheets of compressible material: field equations, Airy stress function and an application in fracture mechanics. J. Elast. 44(1), 37–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Long, R., Krishnan, V.R., Hui, C.-Y.: Finite strain analysis of crack tip fields in incompressible hyperelastic solids loaded in plane stress. J. Mech. Phys. Solids 59(3), 672–695 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Long, R., Hui, C.-Y.: Crack tip fields in soft elastic solids subjected to large quasi-static deformation—a review. Extreme Mech. Lett. 4, 131–155 (2015)

    Article  Google Scholar 

  26. Bouchbinder, E., Livne, A., Fineberg, J.: The 1/r singularity in weakly nonlinear fracture mechanics. J. Mech. Phys. Solids 57(9), 1568–1577 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bouchbinder, E., Goldman, T., Fineberg, J.: The dynamics of rapid fracture: instabilities, nonlinearities and length scales. Rep. Prog. Phys. 77(4), 046501 (2014)

    Article  MathSciNet  Google Scholar 

  28. Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)

    Google Scholar 

  29. Gao, Y.: Elastostatic crack tip behavior for a rubber-like material. Theor. Appl. Fract. Mech. 14(3), 219–231 (1990)

    Article  Google Scholar 

  30. Naman, R.: Mécanique de la rupture par fissuration. Lavoisier (2012)

  31. Hamam, R., Pommier, S., Bumbieler, F.: Mode I fatigue crack growth under biaxial loading. Int. J. Fatigue 27(10–12), 1342–1346 (2005)

    Article  MATH  Google Scholar 

  32. Chang, J.H., Li, J.F.: Evaluation of asymptotic stress field around a crack tip for Neo-Hookean hyperelastic materials. Int. J. Eng. Sci. 42(15–16), 1675–1692 (2004)

    Article  Google Scholar 

  33. Knowles, J.K., Sternberg, E.: An asymptotic finite-deformation analysis of the elastostatic field near the tip of a crack. J. Elast. 3(2), 67–107 (1973)

    Article  MathSciNet  Google Scholar 

  34. Rice, J.R., Rosengren, G.F.: Plane strain deformation near a crack tip in a power law hardening material. J. Mech. Phys. Solids 16, 1–12 (1968)

    Article  MATH  Google Scholar 

  35. Mansouri, K., Arfaoui, M., Trifa, M., Hassis, H., Renard, Y.: Singular elastostatic fields near the notch vertex of a Mooney–Rivlin hyperelastic body. Int. J. Solids Struct. 80, 532–544 (2016)

    Article  Google Scholar 

  36. Ayatollahi, M.R., Heydari-Meybodi, M., Dehghany, M., Berto, F.: A new criterion for rupture assessment of rubber-like materials under mode-I crack loading: the effective stretch criterion. Adv. Eng. Mater. 18(8), 1364–1370 (2016)

    Article  Google Scholar 

  37. Abaqus/cae User’s Guide, Modeling and Visualization (2016)

  38. Krishnan, V., Hui, C.-Y.: Finite strain stress fields near the tip of an interface crack between a soft incompressible elastic material and a rigid substrate. Eur. Phys. J. E 29(1), 61–72 (2009)

    Article  Google Scholar 

  39. Krishnan, V.R., Hui, C.Y., Long, R.: Finite strain crack tip fields in soft incompressible elastic solids. Langmuir 24(24), 14245–14253 (2008)

    Article  Google Scholar 

  40. Mott, P.H., Dorgan, J.R., Roland, C.M.: The bulk modulus and Poisson’s ratio of “incompressible" materials. J. Sound Vib. 312(4–5), 572–575 (2008)

    Article  Google Scholar 

  41. Gao, Y.: Large deformation field near a crack tip in rubber-like material. Theor. Appl. Fract. Mech. 26(3), 155–162 (1997)

    Article  MathSciNet  Google Scholar 

  42. Gao, Y., Durban, D.: The crack tip field in a rubber sheet. Eur. J. Mech. A. Solids 14(5), 665–677 (1995)

    MATH  Google Scholar 

  43. Li, X.L., Li, X.J., Sang, J.B., Qie, Y.H., Tu, Y.P., Zhang, C.B.: Experimental analysis of the damage zone around crack tip for rubberlike materials under mode-I fracture condition. In: Key Engineering Materials 2013, pp. 119–124. Trans Tech Publications

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hocine Bechir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In Cartesian coordinates, the determinant of the deformation gradient tensor is defined as follows:

$$\begin{aligned} {J}=\frac{1}{6} \in _{{ijk}} \in _{{pqr}} {F}_{{ip}} {F}_{{jq}} {F}_{{kr}} \end{aligned}$$
(A.1)

where \(\in _{{uvw}}\) is the Levi-Civita permutation symbol.

The components of the deformation gradient tensor are defined as follows:

$$\begin{aligned} {F}_{{rs}} = \delta _{{rs}} + {H}_{{rs}} \end{aligned}$$
(A.2)

where \(\delta _{{rs}}\) is the symbol of Kronecker and \({H}_{{rs}}\) denotes the components of the displacement gradient tensor.

Substituting (A.2) into (A.1) leads to:

$$\begin{aligned} J=\frac{1}{6}\in _{{ijk}} \in _{{pqr}} \left( {\delta _{{ip}} +{H}_{{ip}} } \right) \left( {\delta _{{jq}} +{H}_{{jq}} } \right) \left( {\delta _{{kr}} + {H}_{{kr}} } \right) . \end{aligned}$$
(A.3)

Equation (A.3) can be developed as follows:

$$\begin{aligned} J= & {} 1+\frac{1}{6}\left( {\in _{{ijk}} \in _{{pjk}} {H}_{{ip}} +\in _{{ijk}} \in _{{iqk}} {H}_{{jq}} +\in _{{ijk}} \in _{{ijr}} {H}_{{kr}} } \right) \nonumber \\&+\frac{1}{6}\left( {\in _{{ijk}} \in _{{pqk} } {H}_{{ip}} {H}_{{jq}} +\in _{{ijk}} \in _{{pjr}} {H}_{{ip}} {H}_{{kr}} +\in _{{ijk}} \in _{{iqr}} {H}_{{jq}} {H}_{{kr}} } \right) +\frac{1}{6}\in _{{ijk}} \in _{{pqr}} {H}_{{ip}} {H}_{{jq}} {H}_{{kr}}\nonumber \\ \end{aligned}$$
(A.4)

where

$$\begin{aligned} \frac{1}{6}\left( {\in _{{ijk}} \in _{{pjk}} {H}_{{ip}} +\in _{{ijk}} \in _{{iqk}} {H}_{{jq}} +\in _{{ijk}} \in _{{ijr}} {H}_{{kr}} } \right) ={H}_{11} +{H}_{22} +{H}_{33} =\hbox {tr } {\mathbf{H}} \end{aligned}$$
(A.5)

and

$$\begin{aligned} \frac{1}{6}\left( {\in _{{ijk}} \in _{{pqk}} {H}_{{ip}} {H}_{{jq}} +\in _{{ijk}} \in _{{pjr}} {H}_{{ip}} {H}_{{kr}} +\in _{{ijk}} \in _{{iqr}} {H}_{{jq}} {H}_{{kr}}} \right) =\frac{1}{2}\left[ {\left( {\hbox {tr } {\mathbf{H}}} \right) ^{2}-\hbox {tr}\left( {{\mathbf{H}}^{2}} \right) } \right] . \end{aligned}$$
(A.6)

Combining (A.4)–(A.6) allows to rewrite the deformation gradient tensor J as follows:

$$\begin{aligned} J=1+\hbox {tr }{\mathbf{H}}+\frac{1}{2}\left[ {\left( {\hbox {tr } {\mathbf{H}}} \right) ^{2}-\hbox {tr}\left( {{\mathbf{H}}^{2}} \right) } \right] +\det {\mathbf{H}}. \end{aligned}$$
(A.7)

It is worth mentioning that \(\left( {\hbox {tr } {\mathbf{H}}} \right) ^{2}\) and \(\left( {\hbox {tr }{{\mathbf{H}}}^{2}} \right) \) are, respectively, quadratic and third-order terms with respect to H.

      We assume that J is linear in \(\mathbf{H}\) and given by

$$\begin{aligned} J\approx 1+\hbox {tr }{\mathbf{H}}+{{o}}\left( {\hbox {tr }{\mathbf{H}}} \right) . \end{aligned}$$
(A.8)

Appendix B

Substituting Eq. (13), i.e., \({\mathbf{H}}\approx {\mathbf{H}}^{( 0 )}+{\mathbf{H}}^{\left( 1 \right) }\), in Eq. (15) allows to write:

$$\begin{aligned} {{\varvec{\upsigma }}^{{{n}}\ell }}/{\mu _{0} }= & {} \left( {\left( {{\mathbf{H}}^{( 0 )}+{\mathbf{H}}^{\left( 1 \right) }} \right) +\left( {{\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}} \right) +\left( {{\mathbf{H}}^{( 0 )}+{\mathbf{H}}^{\left( 1 \right) }} \right) \left( {{\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}} \right) } \right) {\mathrm{tr}}\left( {{\mathbf{H}}^{( 0 )}+{\mathbf{H}}^{\left( 1 \right) }} \right) \nonumber \\&-\left( {{\mathbf{H}}^{( 0 )}+{\mathbf{H}}^{\left( 1 \right) }} \right) \left( {{\mathbf{H}}^{( 0 )^{\mathrm{T}}}+ {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}} \right) . \end{aligned}$$
(B.1)

Equation (B.1) can be developed as follows:

$$\begin{aligned} {{\varvec{\upsigma }}^{{n}\ell }}/{\mu _{0} }= & {} \left( {\begin{array}{l} {\mathbf{H}}^{( 0 )}+{\mathbf{H}}^{\left( 1 \right) }+{\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+ \\ {\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}} \\ \end{array}} \right) {\mathrm{tr}}\left( {{\mathbf{H}}^{( 0 )}} \right) \nonumber \\&+\left( {\begin{array}{l} {\mathbf{H}}^{( 0 )}+{\mathbf{H}}^{\left( 1 \right) }+{\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+ \\ {\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}} \\ \end{array}} \right) {\mathrm{tr}}\left( {{\mathbf{H}}^{\left( 1 \right) }} \right) \nonumber \\&-\left( {{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}} \right) , \end{aligned}$$
(B.2)
$$\begin{aligned} {{\varvec{\upsigma }}^{{n}\ell }}/{\mu _{0} }= & {} \left( {{\mathbf{H}}^{( 0 )}+{\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{( 0 ){\mathrm{T}}}} \right) {\mathrm{tr}}\left( {{\mathbf{H}}^{( 0 )}} \right) -\left( {{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{( 0 ){\mathrm{T}}}} \right) \nonumber \\&+\left( {{\mathbf{H}}^{\left( 1 \right) }+{\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}} \right) {\mathrm{tr}}\left( {{\mathbf{H}}^{( 0 )}} \right) \nonumber \\&+\left( {{\mathbf{H}}^{( 0 )}+{\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}} \right) {\mathrm{tr}}\left( {{\mathbf{H}}^{\left( 1 \right) }} \right) \nonumber \\&-\left( {{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{( 0 ){\mathrm{T}}}} \right) + \left( {{\mathbf{H}}^{\left( 1 \right) }+{\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}} \right) {\mathrm{tr}}\left( {{\mathbf{H}}^{\left( 1 \right) }} \right) -\left( {{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}} \right) .\nonumber \\ \end{aligned}$$
(B.3)

Using both Eqs. (15) and (B.3), we can write:

$$\begin{aligned} {{\varvec{\upsigma }}^{{n}\ell }}/{\mu _{0} }\approx {{{\varvec{\Sigma }} }^{( 0 )}}/{\mu _{0} }+{{{\varvec{\Sigma }} }^{\left( 1 \right) }}/{\mu _{0} }+{{{\varvec{\Sigma }} }^{\left( 2 \right) }}/{\mu _{0} } . \end{aligned}$$
(B.4)

where \({{\varvec{\Sigma }}^{( 0 )}}/{\mu _{0} }=\left( {{\mathbf{H}}^{( 0 )}+{\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathrm{H}}^{( 0 ){\mathrm{T}}}} \right) {\mathrm{tr}}\left( {{\mathbf{H}}^{( 0 )}} \right) -\left( {{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{( 0 ){\mathrm{T}}}} \right) ,\)

$$\begin{aligned} \begin{array}{l} {{\varvec{\Sigma }}^{\left( 1 \right) }}/{\mu _{0} }=\left( {{\mathbf{H}}^{\left( 1 \right) }+{\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}} \right) \hbox {tr}\left( {{\mathbf{H}}^{( 0 )}} \right) \\ \qquad \qquad \qquad + \left( {{\mathbf{H}}^{( 0 )}+{\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{( 0 ){\mathrm{T}}}+{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}} \right) \hbox {tr}\left( {{\mathbf{H}}^{\left( 1 \right) }} \right) - \left( {{\mathbf{H}}^{( 0 )} {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{( 0 ){\mathrm{T}}}} \right) ,\\ \end{array} \end{aligned}$$

and \({{\varvec{\Sigma }}^{\left( 2 \right) }}/{\mu _{0} }=\left( {{\mathbf{H}}^{\left( 1 \right) }+{\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}+{\mathbf{H}}^{\left( 1 \right) } {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}} \right) {\mathrm{tr}}\left( {{\mathbf{H}}^{\left( 1 \right) }} \right) -\left( {{{\mathbf{H}}}^{\left( 1 \right) } {\mathbf{H}}^{\left( 1 \right) {\mathrm{T}}}} \right) .\)

Appendix C

We calculated the normalized displacement norm of the LEFM-theory, from Eqs. (24) and (25), as follows:

$$\begin{aligned} {U^{( 0 )}}/a=\sqrt{\left[ {u_r^{( 0 )} } \right] ^{2}+\left[ {u_\theta ^{( 0 )} } \right] ^{2}}. \end{aligned}$$
(C.1)

From Eqs. (28), (32), and (33), the normalized displacement norm of the present theory can be written as

$$\begin{aligned} {U^{\left( \ell \right) }}/a=\sqrt{u_r^2 +u_\theta ^2 }. \end{aligned}$$
(C.2)

From Eqs. (34) and (35), the normalized equivalent von Mises stress of the LEFM-theory is given by

$$\begin{aligned} {\sigma _{( \mathrm{VM} )}^{( 0 )} }/{\mu _{0} }=\sqrt{\left( {\sigma _{rr}^{( 0 )} -\sigma _{\theta \theta }^{( 0 )} } \right) ^{2}+\sigma _{rr}^{( 0 )} \sigma _{\theta \theta }^{( 0 )} +3 \sigma _{r\theta }^{( 0 )} }. \end{aligned}$$
(C.3)

We have computed the normalized equivalent von Mises stress of the present theory by using results of Eq. (36) as follows:

$$\begin{aligned} {\sigma _{( \mathrm{VM} )}^\ell }/{\mu _{0} }=\sqrt{\left( {\sigma _{rr}^\ell -\sigma _{\theta \theta }^\ell } \right) ^{2}+\sigma _{rr}^\ell \sigma _{\theta \theta }^\ell +3 \sigma _{r\theta }^\ell }. \end{aligned}$$
(C.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Methia, M., Bechir, H., Frachon, A. et al. An asymptotic finite plane deformation analysis of the elastostatic fields at a crack tip in the framework of hyperelastic, isotropic, and nearly incompressible neo-Hookean materials under mode-I loading. Acta Mech 231, 929–946 (2020). https://doi.org/10.1007/s00707-019-02577-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02577-7

Navigation