Skip to main content
Log in

Preservation of adiabatic invariants for disturbed Hamiltonian systems under variational discretization

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The perturbation to conformal invariance and the numerical algorithm of Hamiltonian systems with disturbed forces under variational discretization are studied in this paper. Based on the discrete difference variational principles, the discrete Hamiltonian equations (variational integrators) for dynamical systems are obtained in the undisturbed and the disturbed cases, respectively. The determining equations of perturbation to conformal invariance are established for disturbed Hamiltonian systems. The exact invariants of Noether type led by conformal invariance for an undisturbed Hamiltonian system are derived. For disturbed discrete Hamiltonian systems, the condition of perturbation to conformal invariance leading to adiabatic invariants is proposed. Two examples are considered: a simple harmonic oscillator and the Kepler problem. The dynamical analysis is given by using the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Pritula, G.M., Petrenko, E.V., Usatenko, O.V.: Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems. Phys. Lett. A 382, 548–553 (2018)

    Article  MathSciNet  Google Scholar 

  2. Burgers, J.M.: Die adiabatischen Invarianten bedingt periodischer Systeme. Ann. Phys. 52, 195–202 (1917)

    Article  Google Scholar 

  3. Nayfeh, A.H., Balachandran, B.: Modal interactions in dynamical and structural systems. Appl. Mech. Rev. 42, S175–S201 (1989)

    Article  MathSciNet  Google Scholar 

  4. Noether, A.E.: Invariante Variationsprobleme. Nachr. Akad. Wiss. Gött. Math.-Phys. Kl. 2, 235–257 (1918)

    MATH  Google Scholar 

  5. Lutzky, M.: Non-invariance symmetries and constants of the motion. Phys. Lett. A 72, 86–88 (1979)

    Article  MathSciNet  Google Scholar 

  6. Mei, F.X.: Form invariance of Lagrange system. J. Beijing Inst. Technol. 9, 120–124 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Luo, S.K., Li, Z.J., Peng, W., Li, L.: A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mech. 224, 71–84 (2013)

    Article  MathSciNet  Google Scholar 

  8. Jiang, W.A., Liu, K., Zhao, G.L., Chen, M.: Noether symmetrical perturbation and adiabatic invariants for disturbed non-material volumes. Acta Mech. 229, 4771–4778 (2018)

    Article  MathSciNet  Google Scholar 

  9. Zhang, Y., Wang, X.P.: Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. Int. J. Nonlin. Mech. 105, 165–172 (2018)

    Article  Google Scholar 

  10. Ali, M.N., Seadawy, A.R., Husnine, S.M.: Lie point symmetries exact solutions and conservation laws of perturbed Zakharov–Kuznetsov equation with higher-order dispersion term. Mod. Phys. Lett. A 34, 1950027 (2019)

    Article  MathSciNet  Google Scholar 

  11. Luo, S.K., Yang, M.J., Zhang, X.T., Dai, Y.: Basic theory of fractional Mei symmetrical perturbation and its applications. Acta Mech. 229, 1833–1848 (2018)

    Article  MathSciNet  Google Scholar 

  12. Galiullin, A.S., Gafarov, G.G., Malaishka, R.P., Khwan, A.M.: Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems. UFN, Moscow (1997)

    Google Scholar 

  13. Cai, J.L.: Conformal invariance of Mei symmetry for the non-holonomic systems of non-Chetaev’s type. Nonlinear Dyn. 69, 487–493 (2012)

    Article  MathSciNet  Google Scholar 

  14. Karevski, D., Schütz, G.M.: Conformal invariance in driven diffusive systems at high currents. Phys. Rev. Lett. 118, 030601 (2017)

    Article  Google Scholar 

  15. Wang, P.: Conformal invariance and conserved quantities of mechanical system with unilateral constraints. Commun. Nonlinear Sci. 59, 463–471 (2018)

    Article  MathSciNet  Google Scholar 

  16. Xia, L.L., Ge, X.S., Chen, L.Q.: Discrete symmetrical perturbation and the variational algorithm of disturbed Lagrangian systems. Chin. Phys. B 28, 030201 (2019)

    Article  Google Scholar 

  17. Wendlandt, J.M., Marsden, J.E.: Mechanical integrators derived from a discrete variational principle. Phys. D 106, 223–246 (1997)

    Article  MathSciNet  Google Scholar 

  18. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MathSciNet  Google Scholar 

  19. Colombo, L., Ferraro, S., Diego, D.M.D.: Geometric integrators for higher-order variational systems and their application to optimal control. J. Nonlinear Sci. 26, 1615–1650 (2016)

    Article  MathSciNet  Google Scholar 

  20. Jiménez, F.: Discrete variational optimal control. J. Nonlinear Sci. 23, 393–426 (2013)

    Article  MathSciNet  Google Scholar 

  21. Bourabee, N., Owhadi, H.: Stochastic variational integrators. IMA J. Numer. Anal. 29, 421–443 (2008)

    Article  MathSciNet  Google Scholar 

  22. Holm, D.D., Tyranowski, T.M.: Stochastic discrete Hamiltonian variational integrators. BIT 58, 1009–1048 (2018)

    Article  MathSciNet  Google Scholar 

  23. Bai, L., Ge, X.S.: Dynamic modeling of spacecraft solar panels deployment with Lie group variational integrator. TAML 8, 415–424 (2018)

    Google Scholar 

  24. Ebrahimi, M., Butscher, A., Cheong, H., Iorio, F.: Design optimization of dynamic flexible multibody systems using the discrete adjoint variable method. Comput. Struct. 213, 82–99 (2019)

    Article  Google Scholar 

  25. Wenger, T., Ober-Blöbaum, S., Leyendecker, S.: Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints. Adv. Comput. Math. 43, 1163–1195 (2017)

    Article  MathSciNet  Google Scholar 

  26. McLachlan, R., Perlmutter, M.: Integrators for nonholonomic mechanical systems. J. Nonlinear Sci. 16, 283–328 (2006)

    Article  MathSciNet  Google Scholar 

  27. Chang, D.E., Perlmutter, M.: Feedback integrators for nonholonomic mechanical systems. J. Nonlinear Sci. 29, 1165–1204 (2019)

    Article  MathSciNet  Google Scholar 

  28. Dorodnitsyn, V., Kozlov, R.: Invariance and first integrals of continuous and discrete Hamiltonian equations. J. Eng. Math. 66, 253–270 (2010)

    Article  MathSciNet  Google Scholar 

  29. Fu, J.L., Fu, L.P., Chen, B.Y., Sun, Y.: Lie symmetries and their inverse problems of nonholonomic Hamilton systems with fractional derivatives. Phys. Lett. A 380, 15–21 (2016)

    Article  MathSciNet  Google Scholar 

  30. Xia, L.L., Chen, L.Q.: Mei symmetries and conserved quantities for non-conservative Hamiltonian difference systems with irregular lattices. Nonlinear Dyn. 70, 1223–1230 (2012)

    Article  MathSciNet  Google Scholar 

  31. Baikov, V.A., Gazizov, R.K., Ibragimov, N.H.: Perturbation methods in group analysis. J. Math. Sci. 55, 1450–1490 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by National Natural Science Foundation of China (Grand Nos.11502071 and 11732005), the spatial research project and Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Li Xia.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, LL., Bai, L. Preservation of adiabatic invariants for disturbed Hamiltonian systems under variational discretization. Acta Mech 231, 783–793 (2020). https://doi.org/10.1007/s00707-019-02571-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02571-z

Navigation