Skip to main content
Log in

Nonlinear modeling, dynamics, and chaos in a large deflection model of a rotor–disk–bearing system under geometric eccentricity and mass unbalance

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present article treats the nonlinear dynamic analysis of a lightweight flexible rotor–disk–bearing system with geometric eccentricity and mass unbalance. A large deflection model has been derived to represent a nonlinear flexible rotor–bearing system to study the bifurcation, stability, and route to chaos. This mathematical model includes a bidirectional flexible shaft characterized by nonlinear curvature and gyroscopic effect, geometric eccentricity, a rigid disk crooked with unbalance mass, and nonlinear flexible bearings. A perturbation technique has been used to obtain a set of nonlinear algebraic equations that govern the overall dynamics of the system. The system stability has been studied by investigating the bifurcation and route to chaos upon changing the design parameters such as geometric eccentricity, mass unbalance, and disk parameters under the resonance conditions. The present system exhibits a complex behavior traveling with periodic, quasi-periodic, period doubling and chaotic behavior on a gradual change in design variables. The system loses its stability due to S–N bifurcation, which leads to a sudden jump in the response amplitude. These complex behaviors have been studied in detail with the illustration of time history, phase trajectories, bifurcation diagrams, and Poincaré’s map for each category. Qualitative assessment of bifurcation diagrams has been studied to explore the boundaries of the stable and unstable behaviors and essential dynamics of the systems. Special attention to predict its rich dynamics to highlight the route to chaos as a future diagnostic tool has been explored. The presented results offer significant understanding of the dynamic performances and its critical operating conditions of a rotor system subjected to geometric eccentricity and mass imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Eraslan, A.N.: Von Mises’ yield criterion and nonlinearly hardening rotating shafts. Acta Mech. 168, 129–144 (2004)

    Article  Google Scholar 

  2. Dimentberg, M.F.: Vibration of a rotating shaft with randomly varying internal damping. J. Sound Vib. 285, 759–765 (2005)

    Article  Google Scholar 

  3. Eraslan, A.N., Akis, T.: On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems. Acta Mech. 181, 43–63 (2006)

    Article  Google Scholar 

  4. Wang, C.C.: Nonlinear dynamic behavior and bifurcation analysis of a rigid rotor supported by a relatively short externally pressurized porous gas journal bearing system. Acta Mech. 183, 41–60 (2006)

    Article  Google Scholar 

  5. Danesh, V., Asghari, M.: Analysis of micro-rotating disks based on the strain gradient elasticity. Acta Mech. 225, 1955–1965 (2014)

    Article  Google Scholar 

  6. Montiel, A., Carbajal, F., Navarro, G.: On-line algebraic identification of eccentricity parameters in active rotor–bearing systems. Int. J. Mech. Sci. 85, 152–159 (2014)

    Article  Google Scholar 

  7. Shahgholi, M., Khadem, S.E., Bab, S.: Free vibration analysis of a nonlinear slender rotating shaft with simply support conditions. Mech. Mach. Theory 82, 128–140 (2014)

    Article  Google Scholar 

  8. Sinou, J.J., Didier, J., Faverjon, B.: Stochastic non-linear response of a flexible rotor with local non-linearities. Int. J. Nonlinear Mech. 74, 92–99 (2015)

    Article  Google Scholar 

  9. Przybylowicz, P.M., Starczewski, Z., Komorowski, P.K.: Sensitivity of regions of irregular and chaotic vibrations of an asymmetric rotor supported on journal bearings to structural parameters. Acta Mech. 227, 3101–3112 (2016)

    Article  MathSciNet  Google Scholar 

  10. Zou, D., Jiao, C., Ta, N., Rao, Z.: Forced vibrations of a marine propulsion shafting with geometrical nonlinearity (primary and internal resonances). Mech. Mach. Theory 105, 304–319 (2016)

    Article  Google Scholar 

  11. Phadatare, H.P., Pratiher, B.: Nonlinear frequencies and unbalanced response analysis of high speed rotor–bearing systems. Procedia Eng. 144, 801–809 (2016)

    Article  Google Scholar 

  12. Phadatare, H., Choudhary, B., Pratiher, B.: Evaluation of nonlinear responses and bifurcation of a rotor–bearing system mounted on moving platform. Nonlinear Dyn. 90, 493–511 (2017)

    Article  Google Scholar 

  13. Lee, K.H., Han, H.S., Park, S.: Bifurcation analysis of coupled lateral/torsional vibrations of rotor systems. J. Sound Vib. 386, 372–389 (2017)

    Article  Google Scholar 

  14. Entezari, A., Kouchakzadeh, M.A., Carrera, E., Filippi, M.: A refined finite element method for stress analysis of rotors and rotating disks with variable thickness. Acta Mech. 228, 575–594 (2017)

    Article  MathSciNet  Google Scholar 

  15. Chen, L., Wang, J., Han, Q., Chu, F.: Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions. J. Sound Vib. 404, 58–83 (2017)

    Article  Google Scholar 

  16. Phadatare, H.P., Maheshwari, V., Vaidya, K.S., Pratiher, B.: Large deflection model for nonlinear flexural vibration analysis of a highly flexible rotor–bearing system. Int. J. Mech. Sci. 134, 532–544 (2017)

    Article  Google Scholar 

  17. Béri, B., Hogan, J., Stépán, G.: Structural stability of a light rotating beam under combined loads. Acta Mech. 228, 3735–3740 (2017)

    Article  MathSciNet  Google Scholar 

  18. Gaidai, O., Dimentberg, M., Naess, A.: Rotating shaft’s non-linear response statistics under biaxial random excitation by path integration. Int. J. Mech. Sci. 142–143, 121–126 (2018)

    Article  Google Scholar 

  19. Eftekhari, M., Rahmatabadi, A.D., Mazidi, A.: Nonlinear vibration of in-extensional rotating shaft under electromagnetic load. Mech. Mach. Theory 121, 42–58 (2018)

    Article  Google Scholar 

  20. Jehle, G., Fidlin, A.: On the nonlinear dynamics of shift gearbox models. Acta Mech. 229, 2327–2341 (2018)

    Article  MathSciNet  Google Scholar 

  21. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (1995)

    Book  Google Scholar 

  22. Liu, M.F., Chang, T.P.: Vibration analysis of a magneto-elastic beam with general boundary conditions subjected to axial load and external force. J. Sound Vib. 288, 399–411 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barun Pratiher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The kinetic energy of the shaft and disk [7, 16] is

$$\begin{aligned} T= & {} \mathop \int \limits _0^L {\left( {m({\dot{u}}^{2}+{\dot{v}}^{2}+{\dot{w}}^{2})+I_1 \upomega _1^2 +I_2 (\upomega _2^2 +\upomega _3^2 )} \right) } {\text {d}}x\nonumber \\&+\mathop \int \limits _0^L {\left. {\left( {M({\dot{u}}^{2}+{\dot{v}}^{2}+{\dot{w}}^{2})+I_\mathrm{1d} \upomega _1^2 +I_{2d} (\upomega _2^2 +\upomega _3^2 )} \right) } \right| }_{x=L_\mathrm{d} } {\text {d}}x. \end{aligned}$$
(A.1)

The strain energy of the shaft is [19]

$$\begin{aligned} U_\mathrm{s} =\mathop \int \limits _0^L {\left( {A_{11} e\updelta e+D_{11} \rho _1 \updelta \rho _1 +D_{22} \rho _2 \updelta \rho _2 +D_{22} \rho _3 \updelta \rho _3 } \right) } {\text {d}}x. \end{aligned}$$
(A.2)

Here, \(A_{11}, D_{11}\), and \(D_{22}\) are the axial rigidity, torsional rigidity, and bending rigidity, respectively. The \(\rho _{i}\, ({i} = 1, 2, 3)\) are components of shaft curvatures [19],

$$\begin{aligned} A_{11} =\int {E \mathrm{d}A} ,\quad D_{11} =\int G (y^{2}+z^{2})\mathrm{d}A,\quad D_{22} =\int {Ey^{2}} \mathrm{d}A=\int {Ez^{2}} \mathrm{d}A.\quad \end{aligned}$$

The kinetic energy of the mass unbalance due to both eccentricity of the rotor and the externally added unbalance mass (\(m_{{\mathrm{u}}}\)) can be expressed as

$$\begin{aligned} T_\mathrm {d}=&{} \varOmega \left\{ {me_v \left( {{\dot{w}}c-{\dot{v}}s} \right) +\left. {Me_v \left( {{\dot{w}}c-{\dot{v}}s} \right) } \right| _{x=L_d} +\left. {m_\mathrm {u} e_{v1} \left( {{\dot{w}}c-{\dot{v}}s} \right) } \right| _{x=L_d} } \right\} \nonumber \\&-\varOmega \left\{ {me_w \left( {{\dot{v}}c+{\dot{w}}s} \right) +\left. {Me_w \left( {{\dot{v}}c+{\dot{w}}s} \right) } \right| _{x=L_d} +\left. {m_\mathrm {u} e_{w1} \left( {{\dot{v}}c+{\dot{w}}s} \right) } \right| _{x=L_d} } \right\} . \end{aligned}$$
(A.3)

Here, c and s stand for \(\cos \left( {\varOmega t} \right) \) and \(\sin \left( {\varOmega t} \right) \), respectively.

The strain energy stored in the bearings can be expressed as

$$\begin{aligned} U_\mathrm{b}= & {} \frac{1}{2}\left. {\int _0^L {\left[ {\left( K_\mathrm{l} v+K_\mathrm{nl} v^{3}\right) v+\left( K_\mathrm{l} w+K_\mathrm{nl} w^{3}\right) w} \right] } } \right| _{x=0} {\text {d}}x\nonumber \\&+\left. {\frac{1}{2}\int _0^L {\left[ {\left( K_\mathrm{l} v+K_\mathrm{nl} v^{3}\right) v+\left( K_\mathrm{l} w+K_\mathrm{nl} w^{3}\right) w} \right] } } \right| _{x=L} {\text {d}}x \end{aligned}$$
(A.4)

where \(K_\mathrm{l}\) and \(K_\mathrm{nl}\) are linear and nonlinear bearing coefficients of the bearings, respectively. Dirac delta function has been incorporated in order to represent the bearing effect in the distributed system.

The in-extensional condition considers zero strain (\(e = 0\)) along the shaft length, and so, the relation between displacements uv, and w can be expressed as [21]

$$\begin{aligned} \because {(1 + u')^2} + {v'^2} + {w'^2} = 1. \end{aligned}$$

Longitudinal displacement is expressed as \(u\left( {x,t} \right) =\mathop \int \limits _0^L {\sqrt{\left\{ {1-\left( {w'^{2}+v'^{2}} \right) } \right\} }} {\text{ d }}x-L\).

Using Taylor series expansion, the longitudinal displacement can be expressed as

$$\begin{aligned} \begin{aligned} u\left( {x,t} \right) \simeq \mathop \int \limits _0^L {\left\{ {1-\left( {w'^{2}+v'^{2}} \right) +\ldots } \right\} }^{1/2}{\text{ d }}x-L\approx -\frac{1}{2}\mathop \int \limits _0^L {\left( {w'^{2}+v'^{2}} \right) } ^{1/2}{\text{ d }}x \end{aligned} \end{aligned}$$
(A.5)

where ( )’ denotes a derivative with respect to x

Using kinetic love analogy curvature \({\rho }\) can be expressed as [21]

$$\begin{aligned} \rho =\rho _1 e_1 +\rho _2 e_2 +\rho _3 e_3 \end{aligned}$$
(A.6)

Here, \(\rho _1 ={\phi }'-{\psi }'\sin \theta ,\rho _2 ={\psi }'\sin \phi \cos \theta +{\theta }'\cos \phi ,\rho _3 ={\psi }'\cos \phi \cos \theta -{\theta }'\sin \phi .\)

The following are the coefficients of equations of motions.

$$\begin{aligned} \kappa _1=&{} \mathop \int \limits _0^1 \left( \varphi ^{2}-\varphi {\varphi }''I_2 +\varphi _{x=d}^2 \beta _1 -\varphi _{x=d} ({\varphi }'')_{x=L_d} I_{2d} \right) {\text{ d }}x,\kappa _2 =\mathop \int \limits _0^1 \left( \varphi ^{2}+\varphi _{x=0}^2 +\varphi _{x=L}^2 \right) {\text{ d }}x, \nonumber \\ \kappa _3=&{} \mathop \int \limits _0^1 \left( {\varphi } \varphi ^{\prime \prime \prime \prime }+\varphi _{x=0}^2 K_\mathrm {l} +\varphi _{x=L}^2 K_\mathrm {l} \right) {\text{ d }}x,\kappa _4 =-\mathop \int \limits _0^1 \left( \varphi {\varphi }''I_2 +\varphi _{x=L_d}({\varphi }'')_{x=L_d} I_{2d} \right) {\text{ d }}x, \nonumber \\ \kappa _5=&{} \mathop \int \limits _0^1 \left( \varphi {\varphi }'^{2}\varphi ^{\prime \prime \prime \prime }+\varphi {\varphi }''^{3}+4\varphi {\varphi }'{\varphi }''{\varphi }'''\right) {\text{ d }}x,\kappa _6 =\mathop \int \limits _0^1 \left( \left( \varphi ^{4}\right) _{x=0} K_\mathrm {nl} +\left( \varphi ^{4}\right) _{x=l} K_\mathrm {nl} \right) {\text{ d }}x, \nonumber \\ \kappa _7=&{} \mathop \int \limits _0^1 \left( \varphi \varphi ^{\prime \prime }\int _1^x {\int _0^x {\varphi ^{\prime 2}} } {\text{ d }}x{\text{ d }}x+\beta _1 \left( \varphi \varphi ^{\prime \prime }\int _1^x {\int _0^x {\varphi ^{\prime 2}} } {\text{ d }}x{\text{ d }}x\right) _{x=L_d} \right. \nonumber \\ {}&-\left. \left( \varphi {\varphi }'\int _0^x {\varphi ^{\prime 2}} {\text{ d }}x+\beta _1 \left( \varphi {\varphi }'\int _0^x {\varphi ^{\prime 2}} {\text{ d }}x\right) _{x=L_d} \right) \right) {\text{ d }}x, \nonumber \\ c=&{} \mathop \int \limits _0^1 \left( {\varphi ^{2}} +\varphi _{x=0}^2 c_\mathrm {b} +\varphi _{x=L}^2 c_\mathrm {b} \right) {\text{ d }}x,\quad \varLambda _1 =e_v +\left( \beta _1 e_v +\beta _2 \left( e_v +e_{v1} \right) \right) |_{x=L_d} , \nonumber \\ \varLambda _2=&{} e_w +\left( \beta _1 e_w +\beta _2 \left( e_w +e_{w1} \right) \right) |_{x=L_d}. \end{aligned}$$
(A.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phadatare, H.P., Pratiher, B. Nonlinear modeling, dynamics, and chaos in a large deflection model of a rotor–disk–bearing system under geometric eccentricity and mass unbalance. Acta Mech 231, 907–928 (2020). https://doi.org/10.1007/s00707-019-02559-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02559-9

Navigation