Skip to main content
Log in

Plastic deformation of a film-substrate with inhomogeneous inclusions under contact loading

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a semi-analytic solution is developed to investigate the plastic deformation of a film-substrate with inhomogeneous inclusions subjected to contact loading. In this solution, the surface pressure distribution and contact area can be determined by solving a set of governing equations via a modified conjugate gradient method. The inhomogeneous inclusions and the coating material are modeled as homogeneous inclusions with known initial eigenstrains plus unknown equivalent eigenstrains, according to the Eshelby’s equivalent inclusion method. A plasticity loop and an incremental loading process are used to obtain the accumulative plastic strain iteratively. This model considers not only the interactions among the contact loading body, embedded inhomogeneous inclusions and film materials, but also the plastic deformation of the film-substrate system. This solution is of great significance to understand the plastic deformation mechanism of a film-substrate with inhomogeneous inclusions under contact loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Askari, D., Ghasemi-Nejhad, M.N.: Effects of vacancy defects on mechanical properties of graphene/carbon nanotubes: a numerical modeling. J. Comput. Theor. Nanosci. 8(4), 783–794 (2011)

    Article  Google Scholar 

  2. Hao, F., et al.: Mechanical and thermal transport properties of graphene with defects. Appl. Phys. Lett. 99(4), 041901 (2011)

    Article  Google Scholar 

  3. Jin, M.Z., et al.: The effects of micro-defects and crack on the mechanical properties of metal fiber sintered sheets. Int. J. Solids Struct. 51(10), 1946–1953 (2014)

    Article  Google Scholar 

  4. Zhou, K., et al.: A fast method for solving three-dimensional arbitrarily shaped inclusions in a half space. Comput. Methods Appl. Mech. Eng. 198(9–12), 885–892 (2009)

    Article  MATH  Google Scholar 

  5. Zhou, K., et al.: Multiple 3D inhomogeneous inclusions in a half space under contact loading. Mech. Mater. 43(8), 444–457 (2011)

    Article  Google Scholar 

  6. Zhou, K., et al.: Semi-analytic solution for multiple interacting three-dimensional inhomogeneous inclusions of arbitrary shape in an infinite space. Int. J. Numer. Methods Eng. 87(7), 617–638 (2011)

    Article  MATH  Google Scholar 

  7. Zhou, K.: Elastic field and effective moduli of periodic composites with arbitrary inhomogeneity distribution. Acta Mech. 223(2), 293–308 (2012)

    Article  MATH  Google Scholar 

  8. Dong, Q.B., Zhou, K.: Elastohydrodynamic lubrication modeling for materials with multiple cracks. Acta Mech. 225(12), 3395–3408 (2014)

    Article  MATH  Google Scholar 

  9. Zhou, K., Wei, R.B.: Modeling cracks and inclusions near surfaces under contact loading. Int. J. Mech. Sci. 83, 163–171 (2014)

    Article  Google Scholar 

  10. Zhou, K., Wei, R.B.: Multiple cracks in a half-space under contact loading. Acta Mech. 225(4–5), 1487–1502 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong, Q.B., Zhou, K.: Multiple inhomogeneous inclusions and cracks in a half space under elastohydrodynamic lubrication contact. Int. J. Appl. Mech. 7(1), 1550003 (2015)

    Article  Google Scholar 

  12. Dong, Q.B., Zhou, K.: Modeling heterogeneous materials with multiple inclusions under mixed lubrication contact. Int. J. Mech. Sci. 103, 89–96 (2015)

    Article  Google Scholar 

  13. Dong, Q.B., et al.: Analysis of fluid pressure, interface stresses and stress intensity factors for layered materials with cracks and inhomogeneities under elastohydrodynamic lubrication contact. Int. J. Mech. Sci. 93, 48–58 (2015)

    Article  Google Scholar 

  14. Zhou, K., et al.: Semi-analytic solution of multiple inhomogeneous inclusions and cracks in an infinite space. Int. J. Comput. Methods 12(1), 1550002 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dong, Q.B., et al.: Heterogeneous structures with inhomogeneous inclusions under elastohydrodynamic lubrication contact with consideration of surface roughness. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol. 230(5), 571–582 (2016)

    Article  Google Scholar 

  16. Fang, Q.H., Zhang, L.C.: Coupled effect of grain boundary sliding and dislocation emission on fracture toughness of nanocrystalline materials. J. Micromech. Mol. Phys. 1(2), 1650008 (2016)

    Article  MathSciNet  Google Scholar 

  17. Long, X., et al.: Mechanical effects of isolated defects within a lead-free solder bump subjected to coupled thermal-electrical loading. J. Micromech. Mol. Phys. 1(1), 1650004 (2016)

    Article  Google Scholar 

  18. Markenscoff, X.: On the dynamic generalization of the anisotropic Eshelby ellipsoidal inclusion and the dynamically expanding inhomogeneities with transformation strain. J. Micromech. Mol. Phys. 1(3–4), 1640001 (2016)

    Article  Google Scholar 

  19. Mikata, Y.: Analytical treatment on the effective material properties of a composite material with spheroidal and ellipsoidal inhomogeneities in an isotropic matrix. J. Micromech. Mol. Phys. 1(3–4), 1640012 (2016)

    Article  Google Scholar 

  20. Ren, H., et al.: A new peridynamic formulation with shear deformation for elastic solid. J. Micromech. Mol. Phys. 1(2), 1650009 (2016)

    Article  Google Scholar 

  21. Shi, C., et al.: An interphase model for effective elastic properties of concrete composites. J. Micromech. Mol. Phys. 01(01), 1650005 (2016)

    Article  Google Scholar 

  22. Wei, R.B., et al.: Modeling surface pressure, interfacial stresses and stress intensity factors for layered materials containing multiple cracks and inhomogeneous inclusions under contact loading. Mech. Mater. 92, 8–17 (2016)

    Article  Google Scholar 

  23. Yang, S., Sharma, P.: Eshelby’s tensor for embedded inclusions and the elasto-capillary phenomenon. J. Micromech. Mol. Phys. 1(3–4), 1630002 (2016)

    Article  Google Scholar 

  24. Zhou, K., Dong, Q.B.: A three-dimensional model of line-contact elastohydrodynamic lubrication for heterogeneous materials with inclusions. Int. J. Appl. Mech. 8(2), 1650014 (2016)

    Article  MathSciNet  Google Scholar 

  25. Burbery, N.B., et al.: Dislocation dynamics in polycrystals with atomistic-informed mechanisms of dislocation–grain boundary interactions. J. Micromech. Mol. Phys. 2(1), 1750003 (2017)

    Article  Google Scholar 

  26. Kuroda, M.: Interpretation of the behavior of metals under large plastic shear deformations: a macroscopic approach. Int. J. Plast. 13(4), 359–383 (1997)

    Article  MATH  Google Scholar 

  27. Kiritani, M., et al.: Plastic deformation of metal thin films without involving dislocations and anomalous production of point defects. Radiat. Eff. Defects Solids 157(1–2), 3–24 (2002)

    Article  Google Scholar 

  28. Richmond, O., Alexandrov, S.: The theory of general and ideal plastic deformations of Tresca solids. Acta Mech. 158(1–2), 33–42 (2002)

    Article  MATH  Google Scholar 

  29. Bucher, A., et al.: A material model for finite elasto-plastic deformations considering a substructure. Int. J. Plast. 20(4–5), 619–642 (2004)

    Article  MATH  Google Scholar 

  30. Guo, L.G., et al.: Research on plastic deformation behaviour in cold ring rolling by FEM numerical simulation. Model. Simul. Mater. Sci. Eng. 13(7), 1029–1046 (2005)

    Article  Google Scholar 

  31. Shi, J., et al.: Damage criteria based on plastic strain energy intensity under complicated stress state. Int. J. Appl. Mech. 7(6), 1550089 (2015)

    Article  Google Scholar 

  32. Chen, J., et al.: Interaction between dislocation and subsurface crack under condition of slip caused by half-plane contact surface normal force. Eng. Fract. Mech. 114, 115–126 (2013)

    Article  Google Scholar 

  33. Wei, R., et al.: Fatigue crack propagation in heterogeneous materials under remote cyclic loading. J. Micromech. Mol. Phys. 1(01), 1650003 (2016)

    Article  Google Scholar 

  34. Bo, L., et al.: Study of transformation toughening behavior of an edge through crack in zirconia ceramics with the cohesive zone model. Int. J. Appl. Mech. 10, 1850066 (2018)

    Article  Google Scholar 

  35. Hui, L., et al.: An implicit coupling finite element and peridynamic method for dynamic problems of solid mechanics with crack propagation. Int. J. Appl. Mech. 10(10), 1850037 (2018)

    Google Scholar 

  36. Mamalis, A.G., et al.: The effect of porosity and micro-defects on plastically deformed porous materials. J. Mater. Process. Technol. 96(1–3), 117–123 (1999)

    Article  Google Scholar 

  37. Pettermann, H.E., et al.: A thermo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental Mori–Tanaka approach. Comput. Struct. 71(2), 197–214 (1999)

    Article  Google Scholar 

  38. von Blanckenhagen, B., et al.: Discrete dislocation simulation of plastic deformation in metal thin films. Acta Mater. 52(3), 773–784 (2004)

    Article  Google Scholar 

  39. Cleja-Tigoiu, S.: Elasto-plastic materials with lattice defects modeled by second order deformations with non-zero curvature. Int. J. Fract. 166(1–2), 61–75 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ellers, J., Driessen, G.: Genetic correlation between temperature-induced plasticity of life-history traits in a soil arthropod. Evol. Ecol. 25(2), 473–484 (2011)

    Article  Google Scholar 

  41. Bose, T., Rattan, M.: Modeling creep analysis of thermally graded anisotropic rotating composite disc. Int. J. Appl. Mech. 10, 1850063 (2018)

    Article  Google Scholar 

  42. Jiang, Y.Y., et al.: Three-dimensional elastic-plastic stress analysis of rolling contact. J. Tribol.-Trans. ASME 124(4), 699–708 (2002)

    Article  Google Scholar 

  43. Shao, Y.F., et al.: Multiscale simulations on the reversible plasticity of Al (0 0 1) surface under a nano-sized indenter. Comput. Mater. Sci. 67, 346–352 (2013)

    Article  Google Scholar 

  44. Shi, S., et al.: Elastic-plastic response of clamped square plates subjected to repeated quasi-static uniform pressure. Int. J. Appl. Mech. 10(6), S1758825118500679 (2018)

    Article  Google Scholar 

  45. Wang, H., et al.: Effects of detwinning on the inelasticity of AZ31B sheets during cyclic loading and unloading. Int. J. Appl. Mech. 10(9), 1850095 (2018)

    Article  Google Scholar 

  46. Mazarei, Z., et al.: Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials. Int. J. Appl. Mech. 8(4), 1650054 (2016)

    Article  Google Scholar 

  47. Soyarslan, C., et al.: A thermomechanically consistent constitutive theory for modeling micro-void and/or micro-crack driven failure in metals at finite strains. Int. J. Appl. Mech. 8(1), 1650009 (2016)

    Article  Google Scholar 

  48. Jacq, C., et al.: Development of a three-dimensional semi-analytical elastic–plastic contact code. J. Tribol.Trans. ASME 124(4), 653–667 (2002)

    Article  Google Scholar 

  49. Chen, W.W., et al.: Modeling elasto-plastic indentation on layered materials using the equivalent inclusion method. Int. J. Solids Struct. 47(20), 2841–2854 (2010)

    Article  MATH  Google Scholar 

  50. Mura, T.: Micromechanics of Defects in Solids. Springer, Dordrecht (1982)

    Book  Google Scholar 

  51. Wang, Z.J., et al.: A numerical elastic–plastic contact model for rough surfaces. Tribol. Trans. 53(2), 224–238 (2010)

    Article  Google Scholar 

  52. Osullivan, T.C., King, R.B.: Sliding contact stress-field due to a spherical indenter on a layered elastic half-space. J. Tribol.-Trans. ASME 110(2), 235–240 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by Singapore Maritime Institute (Grant No: SMI-2014-MA11) and the National Natural Science Foundation of China (Grant No: 11472200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Based on the previous study of Zhou et al. [5] regarding the elastic behaviors of a half-space with arbitrary inhomogeneous inclusions under contact loading, the stress field when considering the plastic deformation can be obtained using the EIM and stress superposition:

$$\begin{aligned} \sigma _{\alpha ,\beta ,\gamma }= & {} \sum \limits _{\zeta =0}^{N_{y}-1} \sum \limits _{\varphi =0}^{N_{x}-1} {M_{\alpha -\xi ,\beta -\zeta ,\gamma }^{n}p_{\xi ,\zeta }} +\sum \limits _{\zeta =0}^{N_{y}-1} \sum \limits _{\varphi =0}^{N_{x}-1} {M_{\alpha -\xi ,\beta -\zeta ,\gamma }^{f}f_{\xi ,\zeta }} \nonumber \\&+\sum \limits _{\varphi =0}^{N_{z}-1} \sum \limits _{\zeta =0}^{N_{y}-1} \sum \limits _{\xi =0}^{N_{x}-1} {A_{\alpha -\xi ,\beta -\zeta ,\gamma -\varphi }\varepsilon _{\xi ,\zeta ,\varphi }^{p}} \nonumber \\&+\sum \limits _{\varphi =0}^{N_{z}-1} \sum \limits _{\zeta =0}^{N_{y}-1} \sum \limits _{\xi =0}^{N_{x}-1} {A_{\alpha -\xi ,\beta -\zeta ,\gamma -\varphi }{(\varepsilon }_{\xi ,\zeta ,\varphi }^{*}} +\varepsilon _{\xi ,\zeta ,\varphi }^{**}) \nonumber \\&\quad (0\le \alpha \le N_{x} -1,0\le \beta \le N_{y}-1, 0\le \gamma \le N_{z}-1), \end{aligned}$$
(A1)

where \(p_{\xi ,\zeta }\) represents the pressure in a discretized surface area centered at (\(x_{\xi },y_{\zeta },0)\), respectively;\( M_{\alpha -\xi ,\beta -\zeta ,\gamma }^{n}\) and \(M_{\alpha -\xi ,\beta -\zeta ,\gamma }^{f}\) are \(6\times 1\) matrix forms of the influence coefficients induced by \(p_{\xi ,\zeta }\) and \(f_{\xi ,\zeta }\) on a surface element, respectively; \(A_{\alpha -\xi ,\beta -\zeta ,\gamma -\varphi }\) is a \(6\times 6\) matrix form of the influence coefficients which relate the eigenstresses \(\sigma _{\alpha ,\beta ,\gamma }^{p}\) and \(\sigma _{\alpha ,\beta ,\gamma }^{*}\) at the observation point (\(x_{a},y_{a},z_{a})\) in the cuboid [\(\alpha ,\beta ,\gamma \)] to the initial eigenstrains \(\varepsilon _{\xi ,\zeta ,\varphi }^{p}\) and equivalent eigenstrains \(\varepsilon _{\xi ,\zeta ,\varphi }^{*}\) plus plastic strain \(\varepsilon _{\xi ,\zeta ,\varphi }^{**}\) in the cuboid [\(\xi ,\zeta ,\varphi ,\)], respectively, and the detailed expressions of \(M_{\alpha -\xi ,\beta -\zeta ,\gamma }^{n}\), \(M_{\alpha -\xi ,\beta -\zeta ,\gamma }^{f}\) and \(A_{\alpha -\xi ,\beta -\zeta ,\gamma -\varphi }\) can be found in the work by Zhou et al. [5]; the value of \(\varepsilon _{\xi ,\zeta ,\varphi }^{**}\) equals zero when the elastic deformation has just occurred and it would be nonzero when plastic deformation happens.

The surface u(xy) can be decomposed into two parts: (1) the elastic displacement \(u^{0}(x,y)\) due to contact loading and (2) the eigendisplacement \( u^{*}(x,y)\) due to the subsurface eigenstrains (the initial eigenstrain \(\varepsilon _{\xi ,\zeta }^{p}\), the equivalent eigenstrains \(\varepsilon _{\xi ,\zeta ,\varphi }^{*}\) and the accumulated plastic strain \(\varepsilon _{\xi ,\zeta ,\varphi }^{**})\). It can be written as

$$\begin{aligned} u\left( x,y \right)= & {} \sum \limits _{\zeta =0}^{N_{y}-1} \sum \limits _{\varphi =0}^{N_{x}-1} {Q_{\alpha -\xi ,\beta -\zeta ,\gamma }^{n}p_{\xi ,\zeta }} +\sum \limits _{\zeta =0}^{N_{y}-1} \sum \limits _{\varphi =0}^{N_{x}-1} {Q_{\alpha -\xi ,\beta -\zeta ,\gamma }^{f}f_{\xi ,\zeta }} \nonumber \\&+\sum \limits _{\varphi =0}^{N_{z}-1} \sum \limits _{\zeta =0}^{N_{y}-1} \sum \limits _{\xi =0}^{N_{x}-1} {{S_{\xi -\alpha ,\zeta -\beta ,\varphi }(\varepsilon _{\xi ,\zeta }^{p}+\varepsilon }_{\xi ,\zeta ,\varphi }^{*}+\varepsilon _{\xi ,\zeta ,\varphi }^{**})}, \end{aligned}$$
(A2)

where \(Q_{\alpha -\xi ,\beta -\zeta ,\gamma }^{n}\) and \(Q_{\alpha -\xi ,\beta -\zeta ,\gamma }^{f}\) are the influence coefficients induced by \(p_{\xi ,\zeta }\) and \(f_{\xi ,\zeta }\) on a surface element, respectively; \(S_{\xi -\alpha ,\zeta -\beta ,\varphi }\) are the coefficients relating to the surface displacement to the initial eigenstrain \(\varepsilon _{\xi ,\zeta }^{p}\), equivalent eigenstrain \(\varepsilon _{\xi ,\zeta }^{*}\) and effective equivalent plastic strain \(\varepsilon _{\xi ,\zeta }^{**}\). The detailed expressions of \(Q_{\alpha -\xi ,\beta -\zeta ,\gamma }^{n}\), \(Q_{\alpha -\xi ,\beta -\zeta ,\gamma }^{f}\) and \(S_{\xi -\alpha ,\zeta -\beta ,\varphi }\) can be found in the work by Zhou et al. [5].

Appendix B

The linear isotropic hardening law describing the size of the yield surface as a function of the accumulated plastic strain p is given as

$$\begin{aligned} \sigma =\sigma _{\mathrm{Y}}+\frac{E_{\mathrm{t}}}{1-\frac{E_{\mathrm{t}}}{E_{S}}}p, \end{aligned}$$
(B1)

where \(\sigma _{\mathrm{Y}}\) is the initial yield stress, \(E_{S}\) is the Young’s modulus, and \(E_{\mathrm{t}}\) is the plastic tangential modulus.

The current study follows the notion postulated by Nelias et al. [43] to calculate the increment in plastic strain. Yielding occurs when the condition \(f\left( p+{\varDelta } p \right) =0\) is satisfied in the plastic zone. The actual increment in the accumulated plastic strain \(\Delta p\) can be obtained through the Newton–Raphson iteration scheme. The yield function can be expanded and approximated as

$$\begin{aligned} f^{(n+1)}=f^{(n)}+{{\varDelta } p}^{(n)}f_{,p}^{(n)}=0. \end{aligned}$$
(B2)

Between two consecutive iterative steps, the correction of the accumulated plastic strain \({{\varDelta } p}^{(n)}\) can be expressed as

$$\begin{aligned} {{\varDelta } p}^{(n)}=-\frac{f^{( n )}}{f_{,p}^{( n )}}=\frac{f^{( n )}}{g_{,p}^{( n )}-\sigma _{VM,p}^{( n )}}. \end{aligned}$$
(B3)

All of the related variables are updated as follows:

$$\begin{aligned} \sigma _{VM}^{\left( n+1 \right) }= & {} \sigma _{VM}^{\left( n \right) }+\sigma _{VM,p}^{\left( n \right) }{{\varDelta } p}^{(n)},\nonumber \\ p^{(n+1)}= & {} p^{(n)}+{{\varDelta } p}^{(n)} ,\nonumber \\ g^{(n+1)}= & {} g(p^{\left( n+1 \right) }). \end{aligned}$$
(B4)

Here, \(p^{(1)}\), \(\sigma _{VM}^{\left( 1 \right) }\) and \(\sigma _{ij}^{\left( 1 \right) }\) are the initial effective plastic strain, the equivalent von Mises stress and the Cauchy stress components, respectively. The calculation ends if the convergence condition is satisfied:

$$\begin{aligned} \left| \frac{f^{\left( n+1 \right) }}{g^{\left( n+1 \right) }} \right| =\left| \frac{\sigma _{VM}^{\left( n+1 \right) }-g^{\left( n+1 \right) }}{g^{\left( n+1 \right) }} \right| < \hbox {tolerance}. \end{aligned}$$
(B5)

The steps indicated in Eqs. (B2)–(B4) are repeated until the iteration converges. According to the plastic flow rule, the estimation of the plastic strain increment is determined:

$$\begin{aligned} \Delta \varepsilon _{ij}^{p}=\left[ p^{\left( n+1 \right) }-p^{(1)}\right] \frac{3S_{ij}^{\left( n+1 \right) }}{2\sigma _{VM}^{\left( n+1 \right) }}. \end{aligned}$$
(B6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Fang, Q., Kang, G. et al. Plastic deformation of a film-substrate with inhomogeneous inclusions under contact loading. Acta Mech 230, 4463–4479 (2019). https://doi.org/10.1007/s00707-019-02518-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02518-4

Navigation