Skip to main content
Log in

Deformation of a spatial elastica constrained inside a springy tube

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Most previous works on spatial elastica constrained inside a tube assumed that the tube wall is rigid. This assumption is not adequate when it involves human artery and tissue. In this paper, we study the deformation of a clamped–clamped rod constrained within a straight flexible tube. The reactive force exerted on the rod is assumed to be only in the radial direction and proportional to the radial displacement of the tube wall at the contact point. The results are compared with those of a rigid tube. The complicated deformations, which change from contact to non-contact within a tight range, can exist only when the tube is rigid. As the tube becomes more flexible, the dramatic variation of contact and non-contact tends to be eased off. It is shown that the peculiar phenomenon of concentrated force pairs on the edges of line-contact segment in the rigid tube model can be captured by the springy wall model as the spring constant approaches infinity. It is also found that the maximum lateral protrusion of the flexible tube does not necessarily occur at the midpoint of the rod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lubinski, A.: A Study of the Buckling of Rotary Drilling Strings. Drilling and Production Practice. American Petroleum Institute, Washington, D.C. (1950)

    Google Scholar 

  2. Schneider, P.A.: Endovascular Skills: Guidewire and Catheter Skills for Endovascular Surgery. Marcel Dekker Inc, New York (2003)

    Book  Google Scholar 

  3. Mahvash, M., Dupont, P.E.: Stiffness control of surgical continuum manipulators. IEEE Trans. Robot. 27, 334–345 (2011)

    Article  Google Scholar 

  4. Lubinski, A., Althouse, W.S., Logan, J.L.: Helical buckling of tubing sealed in packers. J. Pet. Technol. 225, 650–670 (1962)

    Google Scholar 

  5. Mitchell, R.F.: Buckling behavior of well tubing: the packer effect. Soc. Pet. Eng. J. 22, 616–624 (1982)

    Article  Google Scholar 

  6. Cheatham, J.B., Pattillo, P.D.: Helical postbuckling configuration of a weightless column under the action of an axial load. Soc. Pet. Eng. J. 24, 467–472 (1984)

    Article  Google Scholar 

  7. Tan, X.C., Forsman, B.: Buckling of slender string in cylindrical tube under axial load: experiments and theoretical analysis. Exp. Mech. 35, 55–60 (1995)

    Article  Google Scholar 

  8. Paslay, P.R., Bogy, D.B.: The stability of a circular rod laterally constrained to be in contact with an inclined circular cylinder. ASME J. Appl. Mech. 31, 605–610 (1966)

    Article  MathSciNet  Google Scholar 

  9. Dawson, R., Paslay, P.R.: Drillpipe buckling in inclined holes. J. Pet. Technol. 36, 1734–1738 (1984)

    Article  Google Scholar 

  10. Tan, X.C., Digby, P.J.: Buckling of drill string under the action of gravity and axial thrust. Int. J. Solids Struct. 30, 2675–2691 (1993)

    Article  Google Scholar 

  11. Wu, J., Juvkam-Wold, H.C.: Helical buckling of pipes in extended reach and horizontal wells. Part 2. Frictional drag analysis. ASME J. Energy Resour. 115, 196–201 (1993)

    Article  Google Scholar 

  12. Miska, S., Cunha, J.C.: An analysis of helical buckling of tubulars subjected to axial and torsional loading in inclined wellbore. In: Proceeding SPE Production and Operations Symposium, SPE 29460, Oklahoma City, OK, April 2–4 (1995)

  13. Huang, N.C., Pattillo, P.D.: Helical buckling of a tube in an inclined wellbore. Int. J. Nonlinear Mech. 35, 911–923 (2000)

    Article  Google Scholar 

  14. Martinez, A., Miska, S., Kuru, E., Sorem, J.: Experimental evaluation of the lateral contact force in horizontal wells. ASME J. Energy Resour. 122, 123–128 (2000)

    Article  Google Scholar 

  15. McCourt, I., Truslove, T., Kubie, J.: Penetration of tubulars drill pipes in horizontal oil wells. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 216, 1237–1245 (2002)

    Article  Google Scholar 

  16. Miller, J.T., Su, T., Pabon, J., Wicks, N., Bertoldi, K., Reis, P.M.: Buckling of a thin elastic rod inside a horizontal cylindrical constraint. Extreme Mech. Lett. 3, 36–44 (2015)

    Article  Google Scholar 

  17. Miller, J.T., Su, T., Dussan, E.B., Dussan, V., Pabon, J., Wicks, N., Bertoldi, K., Reis, P.M.: Buckling-induced lock-up of a slender rod injected into a horizontal cylinder. Int. J. Solids Struct. 72, 153–164 (2015)

    Article  Google Scholar 

  18. Liu, J.-P., Zhong, X.-Y., Cheng, Z.-B., Feng, X.-Q., Ren, G.-X.: Buckling of a slender rod confined in a circular tube: theory, simulation, and experiment. Int. J. Mech. Sci. 140, 288–305 (2018)

    Article  Google Scholar 

  19. Xiao, J., Chen, Y., Lu, X., Xu, B., Chen, X., Xu, J.: Three dimensional buckling beam under cylindrical constraint. Int. J. Mech. Sci. 150, 348–355 (2018)

    Article  Google Scholar 

  20. Wu, J., Juvkam-Wold, H.C.: The effect of wellbore curvature on tubular buckling and lockup. J. Energy Resour. Technol. 117, 214–218 (1995)

    Article  Google Scholar 

  21. Kuru, E., Martinez, A., Miska, S., Qiu, W.: The buckling behavior of pipes and its influence on the axial force transfer in directional wells. ASME J. Energy Resour. 122, 129–135 (2000)

    Article  Google Scholar 

  22. van der Heijden, G.H.M.: The static deformation of a twisted elastic rod constrained to lie on a cylinder. Proc. R. Soc. Lond. A 457, 695–715 (2001)

    Article  MathSciNet  Google Scholar 

  23. van der Heijden, G.H.M., Champneys, A.R., Thompson, J.M.T.: Spatially complex localisation in twisted elastic rods constrained to a cylinder. Int. J. Solids Struct. 39, 1863–1883 (2002)

    Article  Google Scholar 

  24. van der Heijden, G.H.M.: Helical collapse of a whirling elastic rod forced to lie on a cylinder. ASME J. Appl. Mech. 70, 771–774 (2003)

    Article  Google Scholar 

  25. Thompson, J.M.T., Silveria, M., van der Heijden, G.H.M., Weircigroch, M.: Helical post-buckling of a rod in a cylinder: with applications to drill-strings. Proc. R. Soc. A 468, 1591–1614 (2012)

    Article  Google Scholar 

  26. Feodosyev, V.I.: Selected Problems and Questions in Strength of Materials. Mir, Moscow (1977). Translated from the Russian by M. Konyaeva

    MATH  Google Scholar 

  27. Sorenson, K.G., Cheatham Jr., J.B.: Post-buckling behavior of a circular rod constrained within a circular cylinder. ASME J. Appl. Mech. 53, 929–934 (1986)

    Article  Google Scholar 

  28. Chen, J.-S., Li, H.-C.: On an elastic rod inside a slender tube under end twisting moment. ASME J. Appl. Mech. 78, 041009 (2011)

    Article  Google Scholar 

  29. Chen, J.-S., Fang, J.: Deformation sequence of a constrained spatial buckled beam under edge thrust. Int. J. Non-Linear Mech. 55, 98–101 (2013)

    Article  Google Scholar 

  30. Chen, J.-S., Li, S.-Y.: A twisted elastica constrained inside a tube. Eur. J. Mech. A Solids 44, 61–74 (2014)

    Article  MathSciNet  Google Scholar 

  31. Fang, J., Li, S.-Y., Chen, J.-S.: On a compressed spatial elastica constrained inside a tube. Acta Mech. 224, 2635–2647 (2013)

    Article  MathSciNet  Google Scholar 

  32. Hetenyi, M.: Beams on Elastic Foundation. The University of Michigan Press, Ann Arbor (1946)

    MATH  Google Scholar 

  33. Jansen, J.D.: Non-linear rotor dynamics as applied to oil well drillstring vibrations. J. Sound Vib. 147, 115–135 (1991)

    Article  Google Scholar 

  34. Rybacki, E., Reinicke, A., Meier, T., Makasi, M., Drese, G.: What controls the mechanical properties of shale rocks? Part I: strength and Young’s modulus. J. Pet. Sci. Eng. 135, 702–722 (2015)

    Article  Google Scholar 

  35. Gholipour, A., Ghayesh, M.H., Zander, A.: Nonlinear biomechanics of bifurcated atherosclerotic coronary arteries. Int. J. Eng. Sci. 133, 60–83 (2018)

    Article  MathSciNet  Google Scholar 

  36. Craiem, D., Casciaro, M.E., Graf, S., Glaser, C.E., Gurfinkel, E.P., Armentano, R.L.: Coronary arteries simplified with 3D cylinders to assess true bifurcation angles in atherosclerotic patients. Cardiovassc. Eng. 9, 127–133 (2009)

    Article  Google Scholar 

  37. Hirai, T., Sasayama, S., Kawasaki, T., Yagi, S.-I.: Stiffness of systemic arteries in patients with myocardial-infarction–a noninvasive method to predict severity of coronary atherosclerosis. Circulation 80, 78–86 (1989)

    Article  Google Scholar 

  38. Tran, J.S., Schiavazzi, D.E., Kahn, A.M., Marsden, A.L.: Uncertainty quantification of simulated biomechanical stimuli in coronary artery bypass grafts. Comput. Methods Appl. Mech. Eng. 345, 402–428 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-San Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JS., Chen, DW. Deformation of a spatial elastica constrained inside a springy tube. Acta Mech 230, 4303–4310 (2019). https://doi.org/10.1007/s00707-019-02517-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02517-5

Navigation