Skip to main content
Log in

Low-frequency multi-mode vibration suppression of a metastructure beam with two-stage high-static-low-dynamic stiffness oscillators

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Metastructures with periodic local resonators are effective in attenuating waves in a special frequency range due to their band gap properties. A low-frequency multi-mode resonator based on a two-stage high-static-low-dynamic stiffness oscillator is proposed in this paper to create multiple low-frequency band gaps of flexural waves in a metastructure beam. The theoretical models of infinite and finite metastructure beams are established, respectively. The band structures obtained by the plane wave expansion method are thereafter verified by the mode superstition method. This demonstrates such metastructure features with multiple low-frequency band gaps. Multiple band gaps property is discussed, and a dynamic analysis of a simplified cell shows that locations of band gaps are determined by the natural frequencies of the resonator, which can be adjusted by configuring the physical parameters of the oscillators. The influence of mass ratio and damping on band gaps is numerically analysed, and the results show that mass ratio has an optimal value and damping can suppress the resonance effectively. Finally, a case study is performed, and the results show that the proposed metastructure has good performance in vibration suppression both around concerned multiple low-frequency modes and high-frequency range. The general design procedure of a metastructure beam is also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sigalas, M.M., Economou, E.N.: Elastic and acoustic wave band structure. J. Sound Vibr. 158(2), 377–382 (1992)

    Article  Google Scholar 

  2. Kushwaha, M.S., Halevi, P., Dobrzynski, L., et al.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71(13), 2022–2025 (1993)

    Article  Google Scholar 

  3. Mead, D.M.: Wave propagation in continuous periodic structures: research contributions from Southampton, 1964–1995. J. Sound Vibr. 190(3), 495–524 (1996)

    Article  Google Scholar 

  4. Liu, Z., Zhang, X., Mao, Y., et al.: Locally resonant sonic materials. Science 289(5485), 1734 (2000)

    Article  Google Scholar 

  5. Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66(4), 040802-040802-38 (2014)

    Google Scholar 

  6. Lan, M., Wei, P.: Band gap of piezoelectric/piezomagnetic phononic crystal with graded interlayer. Acta Mech. 225(6), 1779–1794 (2014)

    Article  MathSciNet  Google Scholar 

  7. Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2079), 855 (2007)

    Article  MathSciNet  Google Scholar 

  8. Mei, J., Ma, G., Yang, M., et al.: Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012)

    Article  Google Scholar 

  9. Fang, N., Xi, D., Xu, J., et al.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452 (2006)

    Article  Google Scholar 

  10. Sam Hyeon, L., Choon Mahn, P., Yong Mun, S., et al.: Acoustic metamaterial with negative modulus. J. Phys. Condens. Matter 21(17), 175704 (2009)

    Article  Google Scholar 

  11. Brunet, T., Merlin, A., Mascaro, B., et al.: Soft 3D acoustic metamaterial with negative index. Nat. Mater. 14, 384 (2014)

    Article  Google Scholar 

  12. Wu, Y., Lai, Y., Zhang, Z.-Q.: Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107(10), 105506 (2011)

    Article  Google Scholar 

  13. Lee, S.H., Park, C.M., Seo, Y.M., et al.: Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104(5), 054301 (2010)

    Article  Google Scholar 

  14. Yu, D., Liu, Y., Zhao, H., et al.: Flexural vibration band gaps in Euler–Bernoulli beams with locally resonant structures with two degrees of freedom. Phys. Rev. B 73(6), 064301 (2006)

    Article  Google Scholar 

  15. Xiao, Y., Wen, J., Wang, G., et al.: Theoretical and experimental study of locally resonant and Bragg band gaps in flexural beams carrying periodic arrays of beam-like resonators. J. Vibr. Acoust. 135(4), 041006-041006-17 (2013)

    Article  Google Scholar 

  16. Sugino, C., Ruzzene, M., Erturk, A.: Design and analysis of piezoelectric metamaterial beams with synthetic impedance shunt circuits. IEEE/ASME Trans. on Mechatronics 23(5), 2144–2155 (2018)

    Article  Google Scholar 

  17. Pai, P.F., Peng, H., Jiang, S.: Acoustic metamaterial beams based on multi-frequency vibration absorbers. Int. J. Mech. Sci. 79, 195–205 (2014)

    Article  Google Scholar 

  18. Ma, J., Sheng, M., Guo, Z., et al.: Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators. J. Sound Vibr. 424, 94–111 (2018)

    Article  Google Scholar 

  19. Fang, X., Wen, J., Yin, J., et al.: Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: theoretical study. Phys. Rev. E 94, 1 (2016)

    Google Scholar 

  20. Chen, Y.Y., Huang, G.L.: Active elastic metamaterials for subwavelength wave propagation control. Acta Mech. Sinica 31(3), 349–363 (2015)

    Article  MathSciNet  Google Scholar 

  21. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., et al.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74(4), 046218 (2006)

    Article  MathSciNet  Google Scholar 

  22. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vibr. 301(3), 678–689 (2007)

    Article  Google Scholar 

  23. Zhou, J., Wang, K., Xu, D., et al.: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams. J. Appl. Phys. 121(4), 044902 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 11872290) and NSAF (Grant No. U1430129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilin Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In Eq. (10), the parameters in detail are

$$\begin{aligned} \mathbf{K}= & {} \left[ {{\begin{array}{ccccc} {EIa\left[ {\mathbf{q}_\mathbf{m} } \right] +k_1 \left[ \mathbf{U} \right] }&{}\quad {-k_1 \left[ \mathbf{P} \right] }&{}\quad &{}\quad &{}\quad \\ {-k_1 \left[ \mathbf{P} \right] ^{\mathrm{T}}}&{}\quad {k_1 +k_2 +\cdots +k_g }&{}\quad {-k_2 }&{}\quad \cdots &{}\quad {-k_g } \\ &{}\quad {-k_2 }&{}\quad {k_2 }&{}\quad &{}\quad \\ &{}\quad \vdots &{}\quad &{}\quad \ddots &{}\quad \\ &{}\quad {-k_g }&{}\quad &{}\quad &{}\quad {k_g } \\ \end{array} }} \right] ,\nonumber \\ \mathbf{M}= & {} \left[ {{\begin{array}{ccccc} {\rho Aa\mathbf{I}_{\bar{{M}}\times \bar{{M}}} }&{}\quad &{}\quad &{}\quad &{}\quad \\ &{}\quad {m_1 }&{}\quad &{}\quad &{}\quad \\ &{}\quad &{}\quad {m_2 }&{}\quad &{}\quad \\ &{}\quad &{}\quad &{}\quad \ddots &{}\quad \\ &{}\quad &{}\quad &{}\quad &{}\quad {m_g } \\ \end{array} }} \right] , \\ \mathbf{q}_{\mathbf{m}}= & {} \left[ {{\begin{array}{cccc} {\left[ {q-{2M\pi }/a} \right] ^{4}}&{}\quad &{}\quad &{}\quad \\ &{}\quad {\left[ {{\left( {q-2\left( {M-1} \right) } \right) }/a} \right] ^{4}}&{}\quad &{}\quad \\ &{}\quad &{}\quad \ddots &{}\quad \\ &{}\quad &{}\quad &{}\quad {\left[ {q+{2M\pi }/a} \right] ^{4}} \\ \end{array} }} \right] , \mathbf{P}=\left( {{\begin{array}{l} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array} }} \right) _{\bar{{M}}\times \bar{{M}}} , \mathbf{U}=\mathbf{PP}^{\mathrm{T}}. \end{aligned}$$

In Eq. (15), the parameters in detail are

$$\begin{aligned} {\tilde{\mathbf{K}}}= & {} \left[ {{\begin{array}{ccccc} {EI\left[ {\varvec{{\upbeta }}} \right] +k_1 \left[ \mathbf{V} \right] }&{}\quad {-k_1 \left[ \mathbf{Q} \right] }&{}\quad &{}\quad &{}\quad \\ {-k_1 \left[ \mathbf{Q} \right] ^{\mathrm{T}}}&{}\quad {\left( {k_1 +k_2 +\cdots +k_g } \right) \mathbf{I}_{N\times N} }&{}\quad {-k_2 \mathbf{I}_{N\times N} }&{}\quad \cdots &{}\quad {-k_g \mathbf{I}_{N\times N} } \\ &{}\quad {-k_2 \mathbf{I}_{N\times N} }&{}\quad {k_2 \mathbf{I}_{N\times N} }&{}\quad &{}\quad \\ &{}\quad \vdots &{}\quad &{}\quad \ddots &{}\quad \\ &{}\quad {-k_g \mathbf{I}_{N\times N} }&{}\quad &{}\quad &{}\quad {k_g \mathbf{I}_{N\times N} } \\ \end{array} }} \right] ,\\ {\tilde{\mathbf{M}}}= & {} \left[ {{\begin{array}{ccccc} {\rho A\mathbf{I}_{S\times S} }&{}\quad &{}\quad &{}\quad &{}\quad \\ &{}\quad {m_1 \mathbf{I}_{N\times N} }&{}\quad &{}\quad &{}\quad \\ &{}\quad &{}\quad {m_2 \mathbf{I}_{N\times N} }&{}\quad &{}\quad \\ &{}\quad &{}\quad &{}\quad \ddots &{}\quad \\ &{}\quad &{}\quad &{}\quad &{}\quad {m_g \mathbf{I}_{N\times N} } \\ \end{array} }} \right] ,\\ {\varvec{\upbeta }}= & {} \left[ {{\begin{array}{llll} {\beta _1 }&{}\quad &{}\quad &{}\quad \\ &{}\quad {\beta _2 }&{}\quad &{}\quad \\ &{}\quad &{}\quad \ddots &{}\quad \\ &{}\quad &{}\quad &{}\quad {\beta _S } \\ \end{array} }} \right] ,\quad \mathbf{Q}=\left[ {{\begin{array}{llll} {W_{01} \left( {x_1 } \right) }&{}\quad {W_{01} \left( {x_2 } \right) }&{}\quad \cdots &{}\quad {W_{01} \left( {x_N } \right) } \\ {W_{02} \left( {x_1 } \right) }&{}\quad {W_{02} \left( {x_2 } \right) }&{}\quad \cdots &{}\quad {W_{02} \left( {x_N } \right) } \\ \vdots &{}\quad \vdots &{}\quad &{}\quad \vdots \\ {W_{0S} \left( {x_1 } \right) }&{}\quad {W_{0S} \left( {x_2 } \right) }&{}\quad \cdots &{}\quad {W_{0S} \left( {x_N } \right) } \\ \end{array} }} \right] , \mathbf{V}=\mathbf{QQ}^{\mathrm{T}},\\ {\tilde{\mathbf{C}}}= & {} \left[ {C_{0,1} \,\cdots \,C_{0,S} \quad \,C_{1,1} \quad \cdots \quad C_{1,N} \quad C_{2,1} \cdots \quad C_{g,N} } \right] ^{\mathrm{T}}, \quad {\tilde{\mathbf{F}}}=\left[ {F_1 \quad F_2 \quad \cdots \quad F_S \quad \mathbf{0}_{1\times Ng} } \right] ^{\mathrm{T}}, \quad F_s =W_{0s} \left( {x_0 } \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Huang, G., Liu, C. et al. Low-frequency multi-mode vibration suppression of a metastructure beam with two-stage high-static-low-dynamic stiffness oscillators. Acta Mech 230, 4341–4356 (2019). https://doi.org/10.1007/s00707-019-02515-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02515-7

Navigation