Skip to main content
Log in

Differential scheme-based stochastic micromechanical framework for saturated concrete repaired by EDM

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A stochastic micromechanical framework is proposed to quantitatively characterize the probabilistic behavior of the saturated concrete healed by the electrochemical deposition method (EDM). Multiphase micromechanical representation for the healed saturated concrete is presented based on the material’s microstructures. Differential scheme-based multilevel homogenization procedures are proposed to quantitatively predict the effective properties of the repaired concrete. The material microstructures are characterized by the non-stationary random process and random variables. The probabilistic behavior for the repaired concrete is reached with high computational efficiency by incorporating the dimensional decomposition method and Newton interpolations. The predictions obtained by the proposed stochastic micromechanical framework are then compared with the available experimental data, existing models, and direct Monte Carlo simulations, which indicates that the presented stochastic micromechanical framework is computationally efficient and capable of characterizing for the probabilistic behavior of saturated concrete repaired by EDM considering the inherent randomness. Finally, the influences of the deposition products and healing degrees on the probabilistic behavior of repaired concrete are discussed based on the proposed models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ferrante, F., Graham-Brady, L.: Stochastic simulation of non-Gaussian/non-stationary properties in a functionally graded plate. Comput. Methods Appl. Mech. Eng. 194, 1675–1692 (2005)

    Article  MATH  Google Scholar 

  2. Ferrante, F., Brady, L., Acton, K., Arwade, S.: An overview of micromechanics-based techniques for the analysis of microstructural randomness in functionally graded materials. AIP Conf. Proc. 973, 190–195 (2008)

    Article  Google Scholar 

  3. Zhu, H.H., Chen, Q., Ju, J.W., Yan, Z.G., Guo, F., Wang, Y.Q., Jiang, Z.W., Zhou, S., Wu, B.: Maximum entropy based stochastic micromechanical model for a two-phase composite considering the inter-particle interaction effect. Acta Mech. 226(9), 3069–3084 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Q., Zhu, H.H., Ju, J.W., Guo, F., Wang, L.B., Yan, Z.G., Deng, T., Zhou, S.: A stochastic micromechanical model for multiphase composite containing spherical inhomogeneities. Acta Mech. 226(6), 1861–1880 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sun, W.J., Wang, L.B.: Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review. Front. Struct. Civ. Eng. 11, 322–328 (2018)

    Article  Google Scholar 

  6. Chen, Q., Zhu, H.H., Ju, J.W., Jiang, Z.W., Yan, Z.G., Li, H.X.: Stochastic micromechanical predictions for the effective properties of concrete considering the interfacial transition zone effects. Int. J. Damage Mech. 27(8), 1252–1271 (2018)

    Article  Google Scholar 

  7. Chen, Q., Zhu, H.H., Ju, J.W., Yan, Z.G., Wang, C.H., Jiang, Z.W.: A stochastic micromechanical model for fiber-reinforced concrete using maximum entropy principle. Acta Mech. 229(7), 2719–2735 (2018)

    Article  MathSciNet  Google Scholar 

  8. Jiang, Z.W., Yang, X.J., Yan, Z.G., Chen, Q., Zhu, H.H., Wang, C.H., Ju, J.W., Fang, Z.H., Li, H.X.: A stochastic micromechanical model for hybrid fiber-reinforced concrete. Cem. Concr. Compos. 102, 39–54 (2019)

    Article  Google Scholar 

  9. Rahman, S., Chakraborty, A.: A stochastic micromechanical model for elastic properties of functionally graded materials. Mech. Mater. 39, 548–563 (2007)

    Article  Google Scholar 

  10. Tomar, S.S., Zafar, S., Talha, M., Gao, W., Hui, D.: State of the art of composite structures in non-deterministic framework: a review. Thin Walled Struct. 132, 700–716 (2018)

    Article  Google Scholar 

  11. Otsuki, N., Hisada, M., Ryu, J.S., Banshoya, E.J.: Rehabilitation of concrete cracks by electrodeposition. Concr. Int. 21(3), 58–62 (1999)

    Google Scholar 

  12. Ryu, J.S., Otsuki, N.: Crack closure of reinforced concrete by electro deposition technique. Cem. Concr. Res. 32(1), 159–264 (2002)

    Article  Google Scholar 

  13. Mohankumar, G.: Concrete repair by electrodeposition. Indian Concr. J. 79(8), 57–60 (2005)

    Google Scholar 

  14. Chen, Q.: The stochastic micromechanical models of the multiphase materials and their applications for the concrete repaired by electrochemical deposition method. Ph.D. Dissertation, Tongji University (2014)

  15. Ryu, J.S.: New waterproofing technique for leaking concrete. J. Mater. Sci. Lett. 22, 1023–1025 (2003)

    Article  Google Scholar 

  16. Ryu, J.S., Otsuki, N.: Experimental study on repair of concrete structural members by electrochemical method. Scr. Mater. 52, 1123–1127 (2005)

    Article  Google Scholar 

  17. Zhu, H.H., Chen, Q., Yan, Z.G., Ju, J.W., Zhou, S.: Micromechanical model for saturated concrete repaired by electrochemical deposition method. Mater. Struct. 47, 1067–1082 (2014)

    Article  Google Scholar 

  18. Chen, Q., Zhu, H.H., Yan, Z.G., Deng, T., Zhou, S.: Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on Mori–Tanaka method. J. Build. Struct. 36(1), 98–103 (2015)

    Google Scholar 

  19. Chen, Q., Zhu, H.H., Yan, Z.G., Ju, J.W., Deng, T., Zhou, S.: Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on self-consistent method. Chin. J. Theor. Appl. Mech. 47(2), 367–371 (2015)

    Google Scholar 

  20. Chen, Q., Jiang, Z.W., Zhu, H.H., Ju, J.W., Yan, Z.G.: Micromechanical framework for saturated concrete repaired by the electrochemical deposition method with interfacial transition zone effects. Int. J. Damage Mech. 26(2), 210–228 (2017)

    Article  Google Scholar 

  21. Yan, Z.G., Chen, Q., Zhu, H.H., Ju, J.W., Zhou, S., Jiang, Z.W.: A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method. Int. J. Solids Struct. 50(24), 3875–3885 (2013)

    Article  Google Scholar 

  22. Chen, Q., Jiang, Z.W., Yang, H., Zhu, H., Ju, J.W., Yan, Z.G., Li, H.X.: The effective properties of saturated concrete healed by EDMwith the ITZs. Comput. Concr. 21(1), 67–74 (2018)

    Google Scholar 

  23. Chen, Q., Jiang, Z.W., Zhu, H.H., Ju, J.W., Yan, Z.G., Li, H.X., Rabczuk, T.: A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method with the bonding effects. Int. J. Damage Mech. (2018). https://doi.org/10.1177/1056789518773633

    Article  Google Scholar 

  24. Weng, G.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22, 845–856 (1984)

    Article  MATH  Google Scholar 

  25. Weng, G.: The theoretical connection between Mori–Tanaka’s theory and the Hashin–Shtrikman–Walpole bounds. Int. J. Eng. Sci. 28, 1111–1120 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ju, J.W., Chen, T.M.: Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mech. 103, 103–121 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ju, J.W., Chen, T.M.: Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mech. 103, 123–144 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ostoja-Starzewski, M.: Material spatial randomness: from statistical to representative volume element. Probab. Eng. Mech. 21(2), 112–132 (2006)

    Article  Google Scholar 

  29. Mura, T.: Micromechanics of Defects in Solids. Kluwer, Dordrecht (1987)

    Book  MATH  Google Scholar 

  30. Norris, A.N.: A differential scheme for the effective modulus of composites. Mech. Mater. 4, 1–16 (1985)

    Article  Google Scholar 

  31. McLaughlin, R.: A study of the differential scheme for composite materials. Int. J. Eng. Sci. 15, 237–244 (1977)

    Article  MATH  Google Scholar 

  32. Chen, Q., Jiang, Z.W., Yang, Z.H., Zhu, H.H., Ju, J.W., Yan, Z.G., Wang, Y.Q.: Differential-scheme based micromechanical framework for saturated concrete repaired by the electrochemical deposition method. Mater. Struct. 49(12), 5183–5193 (2016)

    Article  Google Scholar 

  33. Chen, Q., Jiang, Z.W., Yang, Z.H., Zhu, H.H., Ju, J.W., Yan, Z.G., Wang, Y.Q.: Differential-scheme based micromechanical framework for unsaturated concrete repaired by the electrochemical deposition method. Acta Mech. 228(2), 415–431 (2017)

    Article  MathSciNet  Google Scholar 

  34. Chen, Q., Mousavi, N.M., Fisher, Q., Zhu, H.H.: Multi-scale approach for modeling the transversely isotropic elastic properties of shale considering multi-inclusions and interfacial transition zone. Int. J. Rock Mech. Min. Sci. 84, 95–104 (2016)

    Article  Google Scholar 

  35. Chen, Q., Zhu, H.H., Yan, Z.G., Ju, J.W., Jiang, Z.W., Wang, Y.Q.: A multiphase micromechanical model for hybrid fiber reinforced concrete considering the aggregate and ITZ effects. Constr. Build. Mater. 114, 839–850 (2016)

    Article  Google Scholar 

  36. Nezhad, M.M., Zhu, H.H., Ju, J.W., Chen, Q.: A simplified multiscale damage model for the transversely isotropic shale rocks under tensile loading. Int. J. Damage Mech. 25(5), 705–726 (2016)

    Article  Google Scholar 

  37. Zhu, H.H., Chen, Q.: An approach for predicting the effective properties of multiphase composite with high accuracy. Chin. J. Theor. Appl. Mech. 1, 41–47 (2017)

    Google Scholar 

  38. Ju, J., Zhang, X.: Micromechanics and effective transverse elastic moduli of composites with randomly located aligned circular fibers. Int. J. Solids Struct. 35, 941–960 (1998)

    Article  MATH  Google Scholar 

  39. Ju, J., Sun, L.: A novel formulation for the exterior-point Eshelby’s tensor of an ellipsoidal inclusion. J. Appl. Mech. 66, 570–574 (1999)

    Article  Google Scholar 

  40. Ju, J., Sun, L.: Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I: micromechanics-based formulation. Int. J. Solids Struct. 38, 183–201 (2001)

    Article  MATH  Google Scholar 

  41. Ju, J., Yanase, K.: Micromechanics and effective elastic moduli of particle-reinforced composites with near-field particle interactions. Acta Mech. 215, 135–153 (2010)

    Article  MATH  Google Scholar 

  42. Ju, J., Yanase, K.: Micromechanical effective elastic moduli of continuous fiber-reinforced composites with near-field fiber interactions. Acta Mech. 216, 87–103 (2011)

    Article  MATH  Google Scholar 

  43. Sun, L., Ju, J.: Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part II: applications. Int. J. Solids Struct. 38, 203–225 (2001)

    Article  MATH  Google Scholar 

  44. Sun, L., Ju, J.: Elastoplastic modeling of metal matrix composites containing randomly located and oriented spheroidal particles. J. Appl. Mech. 71, 774–785 (2004)

    Article  MATH  Google Scholar 

  45. Yanase, K., Ju, J.W.: Effective elastic moduli of spherical particle reinforced composites containing imperfect interfaces. Int. J. Damage Mech. 21, 97–127 (2012)

    Article  Google Scholar 

  46. Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315–330 (1979)

    Article  MATH  Google Scholar 

  47. Berryman, J.G.: Long-wave propagation in composite elastic media II. Ellipsoidal inclusion. Acoust. Soc. Am. J. 68, 1820–1831 (1980)

    Article  MATH  Google Scholar 

  48. Chen, Q., Zhu, H.H., Ju, J.W., Yan, Z.G., Jiang, Z.W., Chen, B., Wang, Y.Q., Fan, Z.H.: Stochastic micromechanical predictions for the probabilistic behavior of saturated concrete repaired by the electrochemical deposition method. Int. J. Damage Mech. (2019). https://doi.org/10.1177/1056789519860805

    Article  Google Scholar 

  49. Ghanem, P.D., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  50. Xu, H., Rahman, S.: Decomposition methods for structural reliability analysis. Probab. Eng. Mech. 20, 239–250 (2005)

    Article  Google Scholar 

  51. Smith, J.C.: Experimental values for the elastic constants of a particulate-filled glassy polymer. J. Res. Natl. Bureau Stand. 80A, 45–49 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Research and Development Plan (2018YFC0705400, 2017YFC0704004). This work is also supported by the National Natural Science Foundation of China (51508404, 51478348, 51278360, 51308407, U1534207), the Funds of Fundamental Research Plan for the Central Universities in Chang’an University (300102218511), the 1000 Talents Plan Short-Term Program by the Organization Department of the Central Committee of the CPC, the Funds of Fundamental Research Plan for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haoxin Li or Xinwen Yang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Ma, R., Jiang, Z. et al. Differential scheme-based stochastic micromechanical framework for saturated concrete repaired by EDM. Acta Mech 230, 4287–4301 (2019). https://doi.org/10.1007/s00707-019-02511-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02511-x

Navigation