Skip to main content
Log in

A stochastic micromechanical model for fiber-reinforced concrete using maximum entropy principle

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A stochastic micromechanical framework is presented to predict the probabilistic behavior of the fiber-reinforced concrete (FRC) using the maximum entropy principle. The FRC is represented as a multiphase composite composed of the aggregate, the interfacial transition zone, the bulk cement paste, and the fiber. The volume fractions of the different constituents are analytically calculated based on the material mix proportions and the aggregate grading. The multilevel homogenization schemes are presented to predict the material’s effective properties considering the effects of the aggregate, the ITZ, and the fibers with the different shapes. By modeling the volume fractions and properties of constituents as stochastic, we extend the deterministic framework to stochastic to incorporate the inherent randomness of effective properties among the different specimens. The maximum entropy distribution is modified to estimate the probability density function of the material’s properties using their different order moments. Numerical examples including the limited experimental validations, the comparisons with existing micromechanical models, the commonly used probability density functions, and the direct Monte Carlo simulations indicate that the proposed models provide an accurate and computationally efficient framework in characterizing the material’s effective properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohammadi, Y., Carkon-Azad, R., Singh, S.P., Kaushik, S.K.: Impact resistance of steel fibrous concrete containing fibres of mixed aspect ratio. Constr. Build. Mater. 23, 183–189 (2009)

    Article  Google Scholar 

  2. Yan, Z.G., Zhu, H.H., Ju, J.W.: Behavior of reinforced concrete and steel fiber reinforced concrete shield TBM tunnel linings exposed to high temperatures. Constr. Build. Mater. 38, 610–618 (2013)

    Article  Google Scholar 

  3. Thomas, J., Ramaswamy, A.: Mechanical properties of steel fiber-reinforced concrete. J. Mater. Civ. Eng. 19, 385–392 (2007)

    Article  Google Scholar 

  4. Tan, K.H., Paramasivam, P., Tan, K.C.: Instantaneous and long-term deflections of steel fiber reinforced concrete beams. ACI Struct. J. 91, 384–393 (1994)

    Google Scholar 

  5. Ashour, S.A., Wafa, F.F., Kamal, M.I.: Effect of concrete compressive strength and tensile reinforcement ratio on the flexural behavior of fibruous concrete beams. Eng. Struct. 22, 1145–1158 (2000)

    Article  Google Scholar 

  6. Ezeldin, A.S., Balagaru, P.N.: Normal and high strength fiber reinforced concrete under compression. J. Mater. Civil. Eng. 4, 415–429 (1992)

    Article  Google Scholar 

  7. Mansur, M.A., Chin, M.S., Wee, T.H.: Stress–strain relationship of high strength fiber concrete in compression. J. Mater. Civil. Eng. 11, 21–29 (1999)

    Article  Google Scholar 

  8. Ahmad, H.A., Lagoudas, C.L.: Effective elastic properties of fiber-reinforced concrete with random fibers. J. Eng. Mech. 117, 2931–2938 (1991)

    Article  Google Scholar 

  9. Yan, Z.G., Shen, Y., Zhu, H.H., Lu, Y., Li, X.J.: Experimental investigation of reinforced concrete and hybrid fiber reinforced concrete shield tunnel segments subjected to elevated temperature. Fire Saf. J. 71, 86–99 (2015)

    Article  Google Scholar 

  10. Dutra, V.F.P., Maghous, S., Filho, A.C., Pacheco, A.R.: A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete. Cem. Concr. Res. 40, 460–472 (2010)

    Article  Google Scholar 

  11. Teng, T.L., Chu, Y.A., Chang, F.A., Chin, H.S.: Calculating the elastic moduli of steel fiber reinforced concrete using a dedicated empirical formula. Comput. Mater. Sci. 31, 337–346 (2004)

    Article  Google Scholar 

  12. Gal, E., Kryvoruk, R.: Meso-scale analysis of FRC using a two-step homogenization approach. Comput. Struct. 89, 921–929 (2011)

    Article  Google Scholar 

  13. Guan, X.F., Liu, X., Jia, X., Yuan, Y., Cui, J.Z., Mang, H.A.: A stochastic multiscale model for predicting mechanical properties of fiber reinforced concrete. Int. J. Solids Struct. 56–57, 280–289 (2015)

    Article  Google Scholar 

  14. Ferrante, F., Graham-Brady, L.: Stochastic simulation of non-Gaussian/non-stationary properties in a functionally graded plate. Comput. Methods Appl. Mech. Eng. 194, 1675–1692 (2005)

    Article  MATH  Google Scholar 

  15. Chen, Q., Zhu, H.H., Ju, J.W., Guo, F., Wang, L.B., Yan, Z.G., Deng, T., Zhou, S.: A stochastic micromechanical model for multiphase composite containing spherical inhomogeneities. Acta Mech. 226(6), 1861–1880 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhu, H.H., Chen, Q., Ju, J.W., Yan, Z.G., Guo, F., Wang, Y.Q., Jiang, Z.W., Zhou, S., Wu, B.: Maximum entropy based stochastic micromechanical model for a two-phase composite considering the inter-particle interaction effect. Acta Mech. 226(9), 3069–3084 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferrante, F.J., Brady, L.L.G., Acton, K., Arwade, S.R.: An overview of micromechanics-based techniques for the analysis of microstructural randomness in functionally graded materials. AIP Conf. Proc. 973, 190–195 (2008)

    Article  Google Scholar 

  18. Rahman, S., Chakraborty, A.: A stochastic micromechanical model for elastic properties of functionally graded materials. Mech. Mater. 39, 548–563 (2007)

    Article  Google Scholar 

  19. Bai, X.P., Liu, Y.N.: Reliability analysis on civil engineering project based on integrated adaptive simulation annealing and gray correlation method. Front. Struct. Civ. Eng. 10(4), 462–471 (2016)

    Article  Google Scholar 

  20. Guan, X.F., Yu, H.T., Tian, X.: A stochastic second-order and two-scale thermo-mechanical model for strength prediction of concrete materials. Int. J. Numer. Methods Eng. 108(8), 885–901 (2016)

    Article  MathSciNet  Google Scholar 

  21. Guan, X.F., Li, M.X., He, W.M., Jiang, Z.W.: Some superconvergence results of high-degree finite element method for a second order elliptic equation with variable coefficients. Cent. Eur. J. Math. 12(11), 1733–1747 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Chen, Q., Zhu, H.H., Ju, J.W., Jiang, Z.W., Yan, Z.G., Li, H.X.: Stochastic micromechanical predictions for the effective properties of concrete considering the interfacial transition zone effects. Int. J. Damage Mech. (2017). https://doi.org/10.1177/1056789517728501

    Google Scholar 

  23. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, X.J., Zuo, Y.L., Zhuang, X.Y., Zhu, H.H.: Estimation of fracture trace length distributions using probability weighted moments and L-moments. Eng. Geol. 168, 69–85 (2014)

    Article  Google Scholar 

  25. Bernard, O., Ulm, F.J., Lemarchand, E.: A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cem. Concr. Res. 33, 1293–1309 (2003)

    Article  Google Scholar 

  26. Constantinides, G., Ulm, F.J.: The effect of two types of C–S–H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem. Concr. Res. 34(1), 67–80 (2004)

    Article  Google Scholar 

  27. Zheng, J.J., Wong, H.S., Buenfeld, N.R.: Assessing the influence of ITZ on the steady-state chloride diffusivity of concrete using a numerical model. Cem. Concr. Res. 39, 805–813 (2009)

    Article  Google Scholar 

  28. Zheng, J.J., Zhou, X.Z., Jin, X.Y.: An n-layered spherical inclusion model for predicting the elastic moduli of concrete with inhomogeneous ITZ. Cem. Concr. Compos. 34, 716–723 (2012)

    Article  Google Scholar 

  29. Dridi, W.: Analysis of effective diffusivity of cement based materials by multi-scale modelling. Mater. Struct. 46, 313–326 (2013)

    Article  Google Scholar 

  30. Gao, X., Wei, Y., Huang, W.: Critical aspects of scanning probe microscope mapping when applied to cement pastes. Adv. Cem. Res. (2018). https://doi.org/10.1680/jadcr.17.00093

    Google Scholar 

  31. Ju, J.W., Chen, T.M.: Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mech. 103, 103–121 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ju, J.W., Chen, T.M.: Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mech. 103, 123–144 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ju, J.W., Zhang, X.D.: Micromechanics and effective transverse elastic moduli of composites with randomly located aligned circular fibers. Int. J. Solids Struct. 35(9–10), 941–960 (1998)

    Article  MATH  Google Scholar 

  34. Ju, J.W., Sun, L.Z.: A novel formulation for the exterior-point Eshelby’s tensor of an ellipsoidal inclusion. J. Appl. Mech. 66(2), 570–574 (1999)

    Article  Google Scholar 

  35. Ju, J.W., Sun, L.Z.: Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I: micromechanics-based formulation. Int. J. Solids Struct. 38(2), 183–201 (2001)

    Article  MATH  Google Scholar 

  36. Sun, L.Z., Ju, J.W.: Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part II: applications. Int. J. Solids Struct. 38(2), 203–225 (2001)

    Article  MATH  Google Scholar 

  37. Sun, L.Z., Ju, J.W.: Elastoplastic modeling of metal matrix composites containing randomly located and oriented spheroidal particles. J. Appl. Mech. 71, 774–785 (2004)

    Article  MATH  Google Scholar 

  38. Ju, J.W., Yanase, K.: Micromechanics and effective elastic moduli of particle-reinforced composites with near-field particle interactions. Acta Mech. 215(1), 135–153 (2010)

    Article  MATH  Google Scholar 

  39. Ju, J.W., Yanase, K.: Micromechanical effective elastic moduli of continuous fiber-reinforced composites with near-field fiber interactions. Acta Mech. 216(1), 87–103 (2011)

    Article  MATH  Google Scholar 

  40. Yanase, K., Ju, J.W.: Effective elastic moduli of spherical particle reinforced composites containing imperfect interfaces. Int. J. Damage Mech. 21(1), 97–127 (2012)

    Article  Google Scholar 

  41. Zhu, H.H., Chen, Q., Yan, Z.G., Ju, J.W., Zhou, S.: Micromechanical model for saturated concrete repaired by electrochemical deposition method. Mater. Struct. 47, 1067–1082 (2014)

    Article  Google Scholar 

  42. Yan, Z.G., Chen, Q., Zhu, H.H., Ju, J.W., Zhou, S., Jiang, Z.W.: A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method. Int. J. Solids Struct. 50(24), 3875–3885 (2013)

    Article  Google Scholar 

  43. Chen, Q., Zhu, H.H., Yan, Z.G., Deng, T., Zhou, S.: Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on Mori-Tanaka method. J. Build. Struct. 36(1), 98–103 (2015)

    Google Scholar 

  44. Chen, Q., Zhu, H.H., Yan, Z.G., Ju, J.W., Deng, T., Zhou, S.: Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on self-consistent method. Chin. J. Theor. Appl. Mech. 47(2), 367–371 (2015)

    Google Scholar 

  45. Chen, Q., Zhu, H.H., Yan, Z.G., Ju, J.W., Jiang, Z.W., Wang, Y.Q.: A multiphase micromechanical model for hybrid fiber reinforced concrete considering the aggregate and ITZ effects. Constr. Build. Mater. 114, 839–850 (2016)

    Article  Google Scholar 

  46. Chen, Q., Nezhad, M.M., Fisher, Q., Zhu, H.H.: Multi-scale approach for modeling the transversely isotropic elastic properties of shale considering multi-inclusions and interfacial transition zone. Int. J. Rock Mech. Min. Sci. 84, 95–104 (2016)

    Google Scholar 

  47. Chen, Q., Jiang, Z.W., Yang, Z.H., Zhu, H.H., Ju, J.W., Yan, Z.G., Wang, Y.Q.: Differential-scheme based micromechanical framework for saturated concrete repaired by the electrochemical deposition method. Mater. Struct. 49(12), 5183–5193 (2016)

    Article  Google Scholar 

  48. Chen, Q., Jiang, Z.W., Zhu, H.H., Ju, J.W., Yan, Z.G.: An improved micromechanical framework for saturated concrete repaired by the electrochemical deposition method considering the imperfect bonding. J. Eng. 3, 1–11 (2016)

    Google Scholar 

  49. Chen, Q., Jiang, Z.W., Zhu, H.H., Ju, J.W., Yan, Z.G.: Micromechanical framework for saturated concrete repaired by the electrochemical deposition method with interfacial transition zone effects. Int. J. Damage Mech. 26(2), 210–228 (2017)

    Article  Google Scholar 

  50. Chen, Q., Jiang, Z.W., Yang, Z.H., Zhu, H.H., Ju, J.W., Yan, Z.G., Wang, Y.Q.: Differential-scheme based micromechanical framework for unsaturated concrete repaired by the electrochemical deposition method. Acta Mech. 228(2), 415–431 (2017)

    Article  MathSciNet  Google Scholar 

  51. Nezhad, M.M., Zhu, H.H., Ju, J.W., Chen, Q.: A simplified multiscale damage model for the transversely isotropic shale rocks under tensile loading. Int. J. Damage Mech. 25(5), 705–726 (2016)

    Article  Google Scholar 

  52. Hong, S., Yuan, K.Y., Ju, J.W.: Initial strain energy-based thermo-elastoviscoplastic two-parameter damage-self-healing models for bituminous composites-Part I: Formulations. Int. J. Damage Mech. 25(8), 1082–1102 (2016)

    Article  Google Scholar 

  53. Hong, S., Yuan, K.Y., Ju, J.W.: Initial strain energy-based thermo-elastoviscoplastic two-parameter damage-self-healing models for bituminous composites-Part II: Computational aspects. Int. J. Damage Mech. 25(8), 1103–1129 (2016)

    Article  Google Scholar 

  54. Ju, J.W., Wu, Y.: Stochastic micromechanical damage modeling of progressive fiber breakage for longitudinal fiber-reinforced composites. Int. J. Damage Mech. 25(2), 203–227 (2016)

    Article  Google Scholar 

  55. Smith, J.C.: Correction and extension of Van der Poel’s method for calculating the shear modulus of a particulate composite. J. Res. Natl Bureau Stand A Phys. Chem. 78(3), 355–361 (1974)

    Article  Google Scholar 

  56. Smith, J.C.: Simplification of Van der Poel’s formula for the shear modulus of a particulate composite. J. Res. Natl Bureau Stand A Phys. Chem. 79A(2), 419–423 (1975)

    Article  Google Scholar 

  57. Berryman, J.G.: Long-wave propagation in composite elastic media II. Ellipsoidal inclusion. J. Acoust. Soc. Am. 68(6), 1820–1831 (1980)

    Article  MATH  Google Scholar 

  58. Ej, G., Bentz, D.P.: Analytical formulas for interfacial transition zone properties. Adv. Cem. Based Mater. 6(3–4), 99–108 (1997)

    Google Scholar 

  59. Lu, B.L., Torquato, S.: Nearest-surface distribution functions for polydispersed particle system. Phys. Rev. A 45(8), 5530–5544 (1992)

    Article  Google Scholar 

  60. Stock, A.F., Hannant, D.J., Williams, R.I.T.: The effect of aggregate concentration upon the strength and modulus of elasticity of concrete. Mag. Concr. Res. 31(109), 225–34 (1979)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51508404, 51478348, 51278360, 51308407, U1534207). This work is also supported by the National Key Basic Research and Development Program (973 Program, No. 2011CB013800), State Key Laboratory of High Performance Civil Engineering Materials (No. 2015CEM008), Program of Shanghai Science and Technology Commission(15DZ1205003), the 1000 Talents Plan Short-Term Program by the Organization Department of the Central Committee of the CPC, Research Program of State Key Laboratory for Disaster Reduction in Civil Engineering, the Funds of Fundamental Research Plan for the Central Universities.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Chen, Changhong Wang or Zhengwu Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhu, H., Ju, J.W. et al. A stochastic micromechanical model for fiber-reinforced concrete using maximum entropy principle. Acta Mech 229, 2719–2735 (2018). https://doi.org/10.1007/s00707-018-2135-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2135-1

Navigation