Skip to main content
Log in

Numerical analysis of natural frequency and stress intensity factor in Euler–Bernoulli cracked beam

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the evaluation procedures of the natural frequency and the stress intensity factor in the opening mode are established for the Euler–Bernoulli cracked beam by using (a) a technique in the framework of the finite element method, (b) a group method of data handling (GMDH), and (c) the software ABAQUS software. In the first one, the stiffness and mass matrices of the beam are enriched according to the depth and location of the crack for the determination of the natural frequency. A discrete spring model is used to simulate the crack in the structure based on the energy release rate. The continuity conditions in a cracked element are applied to connect two sub-elements of both sides of the crack. In the second method, the natural frequency and the stress intensity factor are determined using the GMDH algorithm. Design of experiments technique is employed to create an optimum arrangement for the application in the GMDH neural network. A few case studies are examined to investigate the results of the analysis, in addition, to identify the priority and the comparison of the three methods. The procedure of the analysis explains the advantages and limitations of the finite element-based technique, the GMDH method, and ABAQUS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Crack depth

\(a_{i}\) :

Constant coefficients of GMDH

A :

Cross-sectional area

b :

Width of the beam

\({\varvec{D}}_{L\left( R \right) }\) :

Conversion matrix of left (right) sub-element

E :

Young’s modulus

\(EI_{0}\) :

Flexural stiffness

h :

Height of the beam

\(I_{0}\) :

Moment of inertia in perfect section

\(I_{c}\) :

Moment of inertia in cracked section

\(k_{sp}\) :

Stiffness factor of rotational spring

\(K_{I}\) :

Stress intensity factor

\({\varvec{K}}_{0}\) :

Stiffness matrix of perfect element

\({\varvec{K}}_{L(R)}\) :

Stiffness matrix of left (right) sub-element

\({\varvec{K}}_{L(R)}^{c}\) :

Enriched stiffness matrix of left (right) sub-element

\({\varvec{K}}_{sp}^{c}\) :

Enriched stiffness matrix of rotational spring

\({\varvec{K}}_{t}^{c}\) :

Stiffness matrix of cracked element

\(l_{e}\) :

Length of the element

L :

Length of the beam

m :

Number of output variables of GMDH

M :

Bending moment

\({\varvec{M}}_{0}\) :

Mass matrix of perfect section

\({\varvec{M}}_{L(R)}\) :

Mass matrix of left (right) sub-element

\({\varvec{M}}_{L(R)}^{c}\) :

Enriched mass matrix of left (right) sub-element

\({\varvec{M}}_{t}^{c}\) :

Enriched total mass matrix

n :

Number of input variables of GMDH

\({\varvec{N}}\) :

Shape function

q :

Distributed load

T :

Kinetic energy

\(T_{L(R)}\) :

Kinetic energy of left (right) sub-element

\(T_{L(R)}^{c}\) :

Enriched kinetic energy of (right) sub-element

\(T_{t}^{c}\) :

Total kinetic energy of a cracked element

\({\varvec{u}}\) :

Displacement vector

\({\dot{{\varvec{u}}}}\) :

Time derivative of displacement vector

\({\varvec{u}}_{L(R)}\) :

Displacement vector of left (right) sub-element

\({\dot{{{\varvec{u}}}}}_{L(R)}\) :

Time derivative of displacement vector of left (right) sub-element

U :

Strain energy

\(U_{L(R)}\) :

Strain energy in left (right) sub-element

\(U_{L(R)}^{c}\) :

Enriched strain energy in left (right) sub-element

\(U_{sp}\) :

Absorbed potential energy in rotational spring

\(U_{t}^{c}\) :

Total potential energy of a cracked element

V :

Shear force

w :

Deflection

\({\dot{w}}\) :

Time derivative of deflection

\({\dot{w}}_{L(R)}\) :

Time derivative of the left sub-element deflection

x :

Axial direction

\(x{}_{i}\) :

Input variables of GMDH

\(x_{0}\) :

Crack location in the beam

\(x_{c}\) :

Crack location in the element

\({\varvec{X}}\) :

Input vector of GMDH

\(y_{i}\) :

Output variables of GMDH

\({\varvec{Y}}\) :

Output vector of GMDH

z :

Transverse direction

\(\Delta \phi \) :

Change in slope

\(\varepsilon _{x}\) :

Axial strain

\(\lambda _{mm}\) :

Compliance for bending moment

v :

Poisson’s ratio

\(\rho \) :

Density

\(\sigma _{x}\) :

Axial stress

\(\phi \) :

Slope

\({\dot{\phi }}\) :

Time derivative of slop

\(\omega \) :

Natural frequency

References

  1. Mohamadi, M.: Extended Finite Element Method For Fracture Analysis of Structures. Blackwell Publishing, Oxford (2008)

    Book  Google Scholar 

  2. Irwin, G.R., Kies, J.A.: Critical energy rate analysis of fracture strength. J. Weld. 33, 193–198 (1954)

    Google Scholar 

  3. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  4. Kienzler, R., Herrmann, D.: On material forces in elementary beam theory. J. Appl. Mech. 53, 561–564 (1986)

    Article  Google Scholar 

  5. Ngo, D., Scordelis, A.C.: Finite element analysis of reinforced concrete beams. J. Am. Concr. Inst. 64, 52–163 (1967)

    Google Scholar 

  6. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. J. Geotech. 29, 47–65 (1979)

    Article  Google Scholar 

  7. Owen, D.R.J., Fawkes, A.J.: Engineering Fracture Mechanics: Numerical Methods and Applications. Pine Ridge Press, Swansea (1983)

    Google Scholar 

  8. Owen, D.R.J.: Hinton E Finite Element Plasticity, Theory and Practice. Pine Ridge Press, Swansea (1980)

    Google Scholar 

  9. Bazant, Z.P., Planas, J.: Fracture and Size Effect in Concrete and Other Quasi Brittle Materials. CRC Press Publishing, London (1998)

    Google Scholar 

  10. Moes, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. J. Numer. Methods Eng. 45, 601–620 (1999)

    Article  MATH  Google Scholar 

  12. Sih, G.C.: Handbook of stress intensity factors for researchers and engineerings. Lehigh University, Bethlehem (1973)

    Google Scholar 

  13. Chang, R.: Static finite element stress intensity factors for annular cracks. J. Nondestr. Eval. 2, 119–124 (1981)

    Article  Google Scholar 

  14. Tada, H., Paris, P.C., Irwin, G.R.: The stress analysis of crack handbook. Paris Productions & (Del Research Corp.) (1985)

  15. Kienzler, R., Herrmann, G.: An elementary theory of defective beams. J. Acta Mech. 62, 37–46 (1986)

    Article  MATH  Google Scholar 

  16. Ricci, P., Viola, E.: Stress intensity factors for cracked T-sections and dynamic behavior of T-beams. J. Eng. Fract. Mech. 73, 91–111 (2006)

    Article  Google Scholar 

  17. Kumar, P.: Elements of Fracture Mechanics. McGraw-Hill, McGraw Hill Education (India) Private Limited, Bengaluru (2009)

    Google Scholar 

  18. Qian, G.L., Gu, S.N., Jiang, J.S.: The dynamic behavior and crack detection of a beam with a crack. J. Sound Vib. 2, 233–243 (1990)

    Article  Google Scholar 

  19. Leissa, A.W., Qatu, M.S.: Vibrations of Continuous Systems. McGraw-Hill, New York (2011)

    Google Scholar 

  20. Rao, S.S.: Mechanical vibrations. Prentice Hall, New York (2011)

    Google Scholar 

  21. Logan, D.L.: A First Course in the Finite Element Method. Chris Carson, Toronto (2007)

    Google Scholar 

  22. Yokoyama, T., Chen, M.C.: Vibration analysis of edge-cracked beams using a line-spring model. J. Eng. Fract. Mech. 59, 403–409 (1998)

    Article  Google Scholar 

  23. Gudmundsun, P.: The dynamic behavior of slender structures with cross-sectional cracks. J. Mech. Phys. Solids 1, 329–345 (1983)

    Article  Google Scholar 

  24. Pandey, A.K., Biswas, M., Samman, M.M.: Damage detection from change in curvature mode shapes. J. Sound Vib. 145, 321–335 (1994)

    Article  Google Scholar 

  25. Lele, S.P., Maiti, S.K.: Modelling of transverse vibration of short beams for crack detection and measurement of crack extension. J. Sound Vib. 257, 559–583 (2002)

    Article  Google Scholar 

  26. Silva, J.M., Gomes, A.J.: Experimental dynamic analysis of cracked free-free beams. J. Exp. Mech. 30, 20–25 (1990)

    Article  Google Scholar 

  27. Kim, J.T., Stubbs, N.: Crack detection in beam-type structures using frequency data. J. Sound Vib. 259, 145–160 (2003)

    Article  Google Scholar 

  28. Swamidas, A.S.J., Yang, X.F., Seshadri, R.: Identification of cracking in beam structures using Timoshenko and Euler formulations. J. Eng. Mech. 130, 1297–1308 (2004)

    Article  Google Scholar 

  29. Dobeling, S.W., Farrar, C.R., Prime, M.B.: A summary review of vibration-based damage identification methods. J. Shock Vib. Dig. 30, 91–105 (1998)

    Article  Google Scholar 

  30. Cawly, P., Adams, R.D.: The locations of defects in structures from measurements of natural frequencies. J. Strain Anal. 14, 49–57 (1979)

    Article  Google Scholar 

  31. Friswell, M.I., Penny, J.E.T., Wilson, D.A.L.: Using vibration data and statistical measures to locate damage in structures. J. Anal. Exp. Modal Anal. 9, 239–254 (1994)

    Google Scholar 

  32. Narkis, Y.: Identification of crack location in vibrating simply supported beams. J. Sound Vib. 172, 549–558 (1994)

    Article  MATH  Google Scholar 

  33. Pandey, A.K., Biswas, M.: Damage detection in structures using changes in flexibility. J. Sound Vib. 169, 3–17 (1994)

    Article  MATH  Google Scholar 

  34. Ratcliffe, C.P.: Damage detection using a modified Laplacian operator on mode shape data. J. Sound Vib. 204, 505–517 (1997)

    Article  Google Scholar 

  35. Ostachowicz, W.M., Krawczuk, M.: Analysis of the effect of cracks on the natural frequencies of a cantilever Beam. J. Sound Vib. 150, 191–201 (1991)

    Article  Google Scholar 

  36. Binici, B.: Vibration of beam with multiple open cracks subjected to axial force. J. Sound Vib. 287, 277–295 (2005)

    Article  Google Scholar 

  37. Sergio, H.S., Daniel, J.I.: Continuous model for the transverse vibration of cracked Timoshenko beams. J. Trans. ASME 124, 310–320 (2002)

    Google Scholar 

  38. Shafiei, M., Khaji, N.: Analytical solutions for free and forced vibrations of a multiple cracked Timoshenko beam subject to a concentrated moving load. J. Acta Mech. 221, 79–97 (2011)

    Article  MATH  Google Scholar 

  39. Neves, A.C., Simões, F.M.F., Pinto da Costa, A.: Vibrations of cracked beams: discrete mass and stiffness models. J. Comput. Struct. 168, 68–77 (2016)

    Article  Google Scholar 

  40. Ivakhnenko, A.G.: Heuristic self-organization in problems of engineering cybernetics. J. Automat. 6, 207–219 (1970)

    Article  Google Scholar 

  41. Ivakhnenko, A.G.: Polynomial theory of complex systems. J. Trans. Syst. 1, 364–378 (1971)

    MathSciNet  Google Scholar 

  42. Kutuk, M.A., Atmaca, N., Guzelbey, I.H.: Explicit formulation of SIF using neural networks for opening mode of fracture. J. Eng. Struct. 29, 2080–2086 (2007)

    Article  Google Scholar 

  43. Nariman-zadeh, N., Darvizeh, A., Darvizeh, M., Gharababaei, H.: Modelling of explosive cutting process of plates using GMDH-type neural network and singular value decomposition. J. Mater. Process. Technol. 128, 80–87 (2002)

    Article  MATH  Google Scholar 

  44. Besarati, S.M., Myers, P.D., Covey, D.C., Jamali, A.: Modelling friction factor in pipeline flow using a GMDH-type neural network. J. Cogent Eng. 2, 1–14 (2015)

    Article  Google Scholar 

  45. Montgomery, D.: Design and Analysis of Experiments. Wiley, New York (2013)

    Google Scholar 

  46. Box, G., Hunter, J., Hunter, W.: Statistics for Experiments. Wiley, New York (2005)

    MATH  Google Scholar 

  47. Ranjit, K.R.: A Primer on the Taguchi Method. Society of Manufacturing Engineers, Michigan (2010)

    MATH  Google Scholar 

  48. Eriksson, M., Andersson, P., Burman, A.: Using design of experiments techniques for an efficient finite element study of the influence of changed. International ANSYS Conference, vol. 2, pp. 63–72 (1998)

  49. Alijani, A., Mastan Abadi, M., Darvizeh, A., Kh. Abadi, M.: Theoretical approaches for bending analysis of founded Euler–Bernoulli cracked beams. J. Arch. Appl. Mech. 88: 875–895 (2018)

    Article  Google Scholar 

  50. Mottaghian, F., Darvizeh, A., Alijani, A.: A novel finite element model for large deformation analysis of cracked beams using classical and continuum-based approaches. J. Arch. Appl. Mech. (2018). https://doi.org/10.1007/s00419-018-1460-0

    Article  Google Scholar 

  51. Zarrinzadeh, H., Kabir, M.Z., Deylami, A.: Extended finite element fracture analysis of a cracked isotropic shell repaired by composite patch. J. Fatigue. Fract. Eng. Mater. Struct. 39, 1352–1365 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alijani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The components of the conversion matrix of the left sub-element:

$$\begin{aligned} D_{L}^{11}= & {} D_{L}^{22}=1 , \end{aligned}$$
(A. 1)
$$\begin{aligned} D_{L}^{12}= & {} D_{L}^{13}=D_{L}^{14}=D_{L}^{21}=D_{L}^{23}=D_{L}^{24}=0 , \end{aligned}$$
(A. 2)
$$\begin{aligned} D_{L}^{31}= & {} \frac{1}{Z}\left( l_{e}^{4}+4l_{e}^{3}\psi -3l_{e}^{2}x_{c}^{2}-12l_{e}^{2}x_{c}\psi +2l_{e}x_{c}^{3}+12l_{e}x_{c}^{2}\psi -4x_{c}^{3}\psi \right) , \end{aligned}$$
(A. 3)
$$\begin{aligned} D_{L}^{32}= & {} \frac{1}{Z}\left( l_{e}^{4}x_{c}-2l_{e}^{3}x_{c}^{2}+4l_{e}^{3}x_{c}\psi +l_{e}^{2}x_{c}^{3}-12l_{e}^{2}x_{c}^{2}\psi +12l_{e}x_{c}^{3}\psi -4x_{c}^{4}\psi \right) , \end{aligned}$$
(A. 4)
$$\begin{aligned} D_{L}^{33}= & {} \frac{1}{Z}\left( 3l_{e}^{2}x_{c}^{2}-2l_{e}x_{c}^{3}+4x_{c}^{3}\psi \right) , \end{aligned}$$
(A. 5)
$$\begin{aligned} D_{L}^{34}= & {} \frac{1}{Z}\left( -l_{e}^{3}x_{c}^{2}+l_{e}^{2}x_{c}^{3}-4l_{e}x_{c}^{3}\psi +4x_{c}^{4}\psi \right) , \end{aligned}$$
(A. 6)
$$\begin{aligned} D_{L}^{41}= & {} \frac{1}{Z}\left( -6l_{e}^{2}x_{c}+6l_{e}x_{c}^{2}-6x_{c}^{2}\psi \right) , \end{aligned}$$
(A. 7)
$$\begin{aligned} D_{L}^{42}= & {} \frac{1}{Z}\left( l_{e}^{4}-4l_{e}^{3}x_{c}+4l_{e}^{3}\psi +{3l}_{e}^{2}x_{c}^{2}-12l_{e}^{2}x_{c}\psi +12l_{e}x_{c}^{2}\psi -6x_{c}^{3}\psi \right) , \end{aligned}$$
(A. 8)
$$\begin{aligned} D_{L}^{43}= & {} \frac{1}{Z}\left( 6l_{e}^{2}x_{c}-6l_{e}x_{c}^{2}+6x_{c}^{2}\psi \right) , \end{aligned}$$
(A. 9)
$$\begin{aligned} D_{L}^{44}= & {} \frac{1}{Z}\left( -2l_{e}^{3}x_{c}+{3l}_{e}^{2}x_{c}^{2}-6l_{e}x_{c}^{2}\psi +6x_{c}^{3}\psi \right) . \end{aligned}$$
(A. 10)

The components of the conversion matrix of the right sub-element:

$$\begin{aligned} D_{R}^{33}= & {} D_{R}^{44}=1 , \end{aligned}$$
(A. 11)
$$\begin{aligned} D_{R}^{31}= & {} D_{R}^{32}=D_{R}^{34}=D_{R}^{41}=D_{R}^{42}=D_{R}^{43}=0, \end{aligned}$$
(A. 12)
$$\begin{aligned} D_{R}^{11}= & {} \frac{1}{Z}\left( l_{e}^{4}+4l_{e}^{3}\psi -3l_{e}^{2}x_{c}^{2}-12l_{e}^{2}x_{c}\psi +2l_{e}x_{c}^{3}+12l_{e}x_{c}^{2}\psi -4x_{c}^{3}\psi \right) , \end{aligned}$$
(A. 13)
$$\begin{aligned} D_{R}^{12}= & {} \frac{1}{Z}\left( l_{e}^{4}x_{c}-2l_{e}^{3}x_{c}^{2}+4l_{e}^{3}x_{c}\psi +l_{e}^{2}x_{c}^{3}-12l_{e}^{2}x_{c}^{2}\psi +12l_{e}x_{c}^{3}\psi -4x_{c}^{4}\psi \right) , \end{aligned}$$
(A. 14)
$$\begin{aligned} D_{R}^{13}= & {} \frac{1}{Z}\left( 3l_{e}^{2}x_{c}^{2}-2l_{e}x_{c}^{3}+4x_{c}^{3}\psi \right) , \end{aligned}$$
(A. 15)
$$\begin{aligned} D_{R}^{14}= & {} \frac{1}{Z}\left( -l_{e}^{3}x_{c}^{2}+l_{e}^{2}x_{c}^{3}-4l_{e}x_{c}^{3}\psi +4x_{c}^{4}\psi \right) , \end{aligned}$$
(A. 16)
$$\begin{aligned} D_{R}^{21}= & {} \frac{1}{Z}\left( -6l_{e}^{2}x_{c}-6l_{e}^{2}\psi +6l_{e}x_{c}^{2}+12l_{e}x_{c}\psi -6x_{c}^{2}\psi \right) , \end{aligned}$$
(A. 17)
$$\begin{aligned} D_{R}^{22}= & {} \frac{1}{Z}\left( l_{e}^{4}-4l_{e}^{3}x_{c}+3l_{e}^{2}x_{c}^{2}-6l_{e}^{2}x_{c}\psi +12l_{e}x_{c}^{2}\psi -6x_{c}^{3}\psi \right) , \end{aligned}$$
(A. 18)
$$\begin{aligned} D_{R}^{23}= & {} \frac{1}{Z}\left( 6l_{e}^{2}x_{c}+6l_{e}^{2}\psi -6l_{e}x_{c}^{2}-12l_{e}x_{c}\psi +6x_{c}^{2}\psi \right) , \end{aligned}$$
(A. 19)
$$\begin{aligned} D_{R}^{24}= & {} \frac{1}{Z}\left( -2l_{e}^{3}x_{c}-2l_{e}^{3}\psi +3l_{e}^{2}x_{c}^{2}+6l_{e}^{2}x_{c}\psi -6l_{e}x_{c}^{2}\psi +6x_{c}^{3}\psi \right) . \end{aligned}$$
(A. 20)

Appendix B

The polynomial equation derived from GMDH method relevant to Table 2c in the determination of the natural frequency for C-F boundary condition:

$$\begin{aligned} y_{7}=\omega _{\mathrm {C-F}}=-0.0129+0.3065y_{5}+0.6919y_{6}+1.2835y_{5}^{2}+1.2465y_{6}^{2}-2.5336y_{5}y_{6}, \end{aligned}$$
(B. 1)

in which

$$\begin{aligned} y_{5}= & {} 0.0592+0.8908 y_{1}+0.8468y_{2}+0.0697y_{1}^{2}-0.2107y_{2}^{2}-0.0178y_{1}y_{2}, \end{aligned}$$
(B. 2)
$$\begin{aligned} y_{6}= & {} 0.0651+0.2924 y_{3}+0.9679y_{4}-0.7217y_{3}^{2}-0.0584y_{4}^{2}+0.0908y_{3}y_{4}, \end{aligned}$$
(B. 3)

and

$$\begin{aligned} y_{1}= & {} -0.1146-0.5181 x_{1}-0.1048x_{4}+0.1440x_{1}^{2}-0.0740x_{4}^{2}+0.0322x_{1}x_{4}, \end{aligned}$$
(B. 4)
$$\begin{aligned} y_{2}= & {} -0.0386-0.4376 x_{2}+0.1473x_{3}+0.1467x_{2}^{2}-0.1091x_{3}^{2}-0.1009x_{2}x_{3}, \end{aligned}$$
(B. 5)
$$\begin{aligned} y_{3}= & {} 0.0106+0.0506 x_{3}-0.1148x_{4}-0.1234x_{3}^{2}+0.0162x_{4}^{2}+0.2357x_{3}x_{4}, \end{aligned}$$
(B. 6)
$$\begin{aligned} y_{4}= & {} -0.2521-0.4772 x_{1}-0.3696x_{2}+0.2319x_{1}^{2}+0.0718x_{2}^{2}+0.0345x_{1}x_{2}. \end{aligned}$$
(B. 7)

The polynomial equation derived from GMDH method relevant to Table 3c in the determination of the stress intensity factor for C-F boundary condition:

$$\begin{aligned} y_{7}=K_{{I}_{\mathrm {C-F}}}=-0.0199+0.5778y_{5} +0.5166y_{6}-0.0103y_{5}^{2}-0.0072y_{6}^{2}+0.0731y_{5}y_{6}, \end{aligned}$$
(B. 8)

in which

$$\begin{aligned} y_{5}= & {} -0.1087+0.9861 y_{1}+0.9669y_{2}+0.1940y_{1}^{2}-0.3077y_{2}^{2}-0.0769y_{1}y_{2}, \end{aligned}$$
(B. 9)
$$\begin{aligned} y_{6}= & {} -0.0332+1.6099 y_{3}+1.0231y_{4}-3.329y_{3}^{2}+0.1587y_{4}^{2}-0.0138y_{3}y_{4}, \end{aligned}$$
(B. 10)

and

$$\begin{aligned} y_{1}= & {} 0.0316+0.2490 x_{1}+0.7884x_{4}+0.0316x_{1}^{2}-0.2319x_{4}^{2}-0.1795x_{1}x_{4}, \end{aligned}$$
(B. 11)
$$\begin{aligned} y_{2}= & {} 0.0149+0.1473 x_{2}-0.2022x_{3}+0.0149x_{2}^{2}+0.0426x_{3}^{2}+0.0092x_{2}x_{3} ,\end{aligned}$$
(B. 12)
$$\begin{aligned} y_{3}= & {} 0.0084-0.0207 x_{3}-0.2191x_{4}+0.0084x_{3}^{2}+0.0801x_{4}^{2}+0.0759x_{3}x_{4}, \end{aligned}$$
(B. 13)
$$\begin{aligned} y_{4}= & {} 0.1161+0.2774 x_{1}+0.5071x_{5}-0.0096x_{1}^{2}-0.0630x_{5}^{2}-0.0581x_{1}x_{5}. \end{aligned}$$
(B. 14)

Appendix C

Modeling differences between ABAQUS and the finite element in a more accurate representation:

 

ABAQUS

Finite element-based technique

Assumptions

2D analysis of the beam

1D analysis of the beam

2D modeling of the crack

1D modeling of the crack

Using C-Integral for the crack modeling

Using rotational spring for the crack modeling

Plane stress state

Neglecting transverse shear deformation

Global steps

Drawing model

Using cubical Hermit functions

Definition of material properties

Definition of strain–displacement and stress–strain relationships

Assembling the model

Derivation of the standard stiffness and mass matrices

Definition of the static/vibration solver

Derivation of the enriched stiffness and mass matrices

Creating an interaction for the crack modeling

Assembling the stiffness and mass matrices and the force vector

Applying loads and boundary conditions

Applying boundary conditions

Meshing

Determination of displacements

Definition of job

 

Advantages

Implementation of a relatively complete modeling for the beam and the crack

The short time of preparation and processing

No need to derive equations

Flexibility in changing material and geometric characteristics and boundary conditions

2D Graphical display of stress contours in the region around the crack tip

 

Disadvantages

The necessity of re-meshing and repartitioning for every new model

The decrease in the accuracy of results in crack depths higher than .8h

Time-consuming in the preparation and processing

Un-capability in the illustration of stress contours in the region around the crack tip

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alijani, A., Abadi, M.K., Razzaghi, J. et al. Numerical analysis of natural frequency and stress intensity factor in Euler–Bernoulli cracked beam. Acta Mech 230, 4391–4415 (2019). https://doi.org/10.1007/s00707-019-02492-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02492-x

Navigation