Skip to main content
Log in

Derivation of a mesoscopic model for nonlinear particle-reinforced composites from a fully microscopic model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Particle-reinforced composites (PRCs) are usually studied by some averaging or homogenization techniques. In this, the effective properties are derived by assuming that particles are dispersed within composites according to some given (probabilistic) distribution. Such approaches restrain the possibilities of studying the contribution of exact location and parameters of individual particles to the overall behavior of composites. In this paper, we attempt to fill this gap by deriving the mesoscopic model of such composites corresponding to a continuum with point inhomogeneities. We start from a fully microscopic model where the composite is regarded as a continuum with spherical inclusions. Letting the diameter of inclusions decrease to zero, material parameters of the composite are represented in terms of the Dirac distribution. The Mindlin–Reissner–von Kármán thick plate theory is considered as a particular case, and closed-form formulas are obtained for the plate stiffness coefficients. Numerical analysis of a thick composite plate reinforced over its mid-surface justifies the theoretical derivations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. German, R.M.: Particulate Composites: Fundamentals and Applications. Springer, Basel (2016)

    Book  Google Scholar 

  2. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  Google Scholar 

  3. Lewiński, T., Telega, J.J.: Plates, Laminates and Shells: Asymptotic Analysis and Homogenization. World Scientific Publishing, Singapore (2000)

    Book  Google Scholar 

  4. Kamiński, M.: Computational Mechanics of Composite Materials. Sensitivity, Randomness and Multiscale Behaviour. Springer, London (2005)

    Google Scholar 

  5. Böhm, H.J., Eckschlager, A., Han, W.: Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Computat. Mater. Sci. 25(1–2), 42–53 (2002)

    Article  Google Scholar 

  6. Nazarenko, L., Stolarski, H.: Energy-based definition of equivalent inhomogeneity for various interphase models and analysis of effective properties of particulate composites. Compos. Part B 94, 82–94 (2016)

    Article  Google Scholar 

  7. Nazarenko, L., Bargmann, S., Stolarski, H.: Closed-form formulas for the effective properties of random particulate nanocomposites with complete Gurtin–Murdoch model of material surfaces. Contin. Mech. Thermodyn. 29(1), 77–96 (2017)

    Article  MathSciNet  Google Scholar 

  8. Nazarenko, L., Stolarski, H., Altenbach, H.: Effective properties of particulate composites with surface-varying interphases. Compos. Part B 149, 268–284 (2018)

    Article  Google Scholar 

  9. Nazarenko, L., Stolarski, H., Khoroshun, L., Altenbach, H.: Effective thermo-elastic properties of random composites with orthotropic components and aligned ellipsoidal inhomogeneities. Int. J. Solids Struct. 136–137, 220–240 (2018)

    Article  Google Scholar 

  10. Picu, C.R., Sorohan, S., Soare, M.A., Constantinescu, D.M.: Designing particulate composites: the effect of variability of filler properties and filler spatial distribution. In: Trovalusci, P. (ed.) Materials with Internal Structure Multiscale and Multifield Modeling and Simulation, pp. 89–108. Springer, Berlin (2016)

    Google Scholar 

  11. Nazarenko, L., Chirkov, A.Y., Stolarski, H., Altenbach, H.: On modeling of carbon nanotubes reinforced materials and on influence of carbon nanotubes spatial distribution on mechanical behavior of structural elements. Int. J. Eng. Sci. 143, 1–13 (2019)

    Article  MathSciNet  Google Scholar 

  12. Berger, H., et al.: An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int. J. Solids Struct. 42(21–22), 5692–5714 (2005)

    Article  Google Scholar 

  13. Lin, Ch-H, Muliana, A.: Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites. Acta Mech. 224(7), 1471–1492 (2013)

    Article  MathSciNet  Google Scholar 

  14. Ju, J.W., Chen, T.M.: Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mech. 103, 103–121 (1994)

    Article  MathSciNet  Google Scholar 

  15. Tong, J., Nan, C.-W., Fu, J., Guan, X.: Effect of inclusion shape on the effective elastic moduli for composites with imperfect interface. Acta Mech. 146(3–4), 127–134 (2001)

    Article  Google Scholar 

  16. Nazarenko, L., Stolarski, H., Altenbach, H.: A definition of equivalent inhomogeneity applicable to various interphase models and various shapes of inhomogeneity. Procedia IUTAM 21, 63–70 (2017)

    Article  Google Scholar 

  17. Kushnevsky, V., Morachkovsky, O., Altenbach, H.: Identification of effective properties of particle reinforced composite materials. Comput. Mech. 22(4), 317–325 (1998)

    Article  Google Scholar 

  18. Altenbach, H.: Modelling of anisotropic behavior in fiber and particle reinforced composites. In: Sadowski, T. (ed.) Multiscale Modelling of Damage and Fracture Processes in Composite Materials. CISM International Centre for Mechanical Sciences (Courses and Lectures), vol. 474. Springer, Vienna (2005)

  19. Altenbach, H., Altenbach, J., Kissing, W.: Mechanics of Composite Structural Elements, 2nd edn. Springer, Singapore (2018)

    Book  Google Scholar 

  20. Muc, A., Barski, M.: Design of particulate-reinforced composite materials. Materials 11, 234 (2018)

    Article  Google Scholar 

  21. Kamiński, M.: Deterministic and probabilistic homogenization limits for particle-reinforced composites with nearly incompressible components. Compos. Struct. 187, 36–47 (2018)

    Article  Google Scholar 

  22. Wriggers, P., Hain, M.: Micro-meso-macro modelling of composite materials. In: Oñate, E., Owen, R. (eds.) Computational Plasticity. Springer, Berlin (2007)

    Google Scholar 

  23. Kamiński, M.: Homogenization of particulate and fibrous composites with some non-Gaussian material uncertainties. Compos. Struct. 210, 778–786 (2019)

    Article  Google Scholar 

  24. Sokolovski, D., Kamiński, M.: Homogenization of carbon/polymer composites with anisotropic distribution of particles and stochastic interface defects. Acta Mech. 229, 3727–3765 (2018)

    Article  MathSciNet  Google Scholar 

  25. Ju, J.W., Yanase, K.: Micromechanics and effective elastic moduli of particle-reinforced composites with near-field particle interactions. Acta Mech. 215, 135–153 (2010)

    Article  Google Scholar 

  26. Tartar, L.: The General Theory of Homogenization. A Personalized Introduction. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  27. Nordmann, J., Aßmus, M., Altenbach, H.: Visualising elastic anisotropy—theoretical background and computational implementation. Contin. Mech. Thermodyn. 30(4), 689–708 (2018)

    Article  MathSciNet  Google Scholar 

  28. Sakata, S., Ashida, F.: Hierarchical stochastic homogenization analysis of a particle reinforced composite material considering non-uniform distribution of microscopic random quantities. Comput. Mech. 48, 529–540 (2011)

    Article  MathSciNet  Google Scholar 

  29. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations. Springer, Cham (2016)

    Book  Google Scholar 

  30. Mikhlin, S.G.: Error Analysis in Numerical Processes. Wiley, Chichester (1991)

    MATH  Google Scholar 

  31. Pica, A., Wood, R.D., Hinton, E.: Finite element analysis of geometrically nonlinear plate behaviour using a Mindlin formulation. Comput. Struct. 11, 203–215 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The support of the State Administration of Foreign Expert Affairs of China is thankfully acknowledged. Valuable remarks of unknown reviewers allowed to improve the presentation of the results substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asatur Zh. Khurshudyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurshudyan, A.Z. Derivation of a mesoscopic model for nonlinear particle-reinforced composites from a fully microscopic model. Acta Mech 230, 3543–3554 (2019). https://doi.org/10.1007/s00707-019-02491-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02491-y

Navigation