Skip to main content
Log in

The meso-scale behavior of anisotropic particle-reinforced thermo-elastic composites

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Linear thermo-elasticity equations are derived in this paper for anisotropic, particle-reinforced composite structures at mesoscale. The full set of equations is first derived at microscale where the structure is represented as a three-dimensional body with spherical inclusions of known spatial distribution. Limiting the consideration by infinitesimal strains and assuming that the inclusions are embedded into the body firmly and that there are no any defects at the interface of inclusions, the mesoscale limit of the set of equations is derived as the scale parameter decreases to 0. Convergence of the corresponding solutions is established. Material characteristics at mesoscale are expressed in terms of Dirac distribution corresponding to a structure with point inhomogeneities. It is shown that the effective or macroscale material characteristics evaluated in terms of the mesoscale ones, match the well-known rule of mixtures. A particular case of Ambarcumyan plate with random distribution of spherical inclusions is studied numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Steinhauser, M.O.: Computational Multiscale Modeling of Fluids and Solids: Theory and Applications, 2nd edn. Springer, Berlin (2017)

    Book  Google Scholar 

  2. Tartar, L.: The General Theory of Homogenization. A Personalized Introduction. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  3. Dvorak, G.J.: Micromechanics of Composite Materials. Springer, Dordrecht (2013)

    Book  Google Scholar 

  4. Altenbach, H., Altenbach, J., Kissing, W.: Mechanics of Composite Structural Elements, 2nd edn. Springer, Singapore (2018)

    Book  Google Scholar 

  5. Lewiński, T., Telega, J.J.: Plates, Laminates and Shells: Asymptotic Analysis and Homogenization. World Scientific Publishing, Singapore (2000)

    Book  Google Scholar 

  6. German, R.M.: Particulate Composites: Fundamentals and Applications. Springer, Cham (2016)

    Book  Google Scholar 

  7. Iftekhar, A.: Biomedical composites. In: Kutz, M. (ed.) Standard Handbook of Biomedical Engineering & Design. McGraw-Hill, New York (2003)

    Google Scholar 

  8. Kushnevsky, V., Morachkovsky, O., Altenbach, H.: Identification of effective properties of particle reinforced composite materials. Comput. Mech. 22, 317–325 (1998)

    Article  Google Scholar 

  9. Altenbach, H.: Multiscale modelling of damage and fracture processes in composite materials. CISM International Centre for Mechanical Sciences (Courses and Lectures). In: Sadowski, T. (ed.) Modelling of Anisotropic Behavior in Fiber and Particle Reinforced Composites, 474th edn. Springer, Vienna (2005)

    MATH  Google Scholar 

  10. Nazarenko, L., Stolarski, H., Altenbach, H.: Effective properties of particulate composites with surface-varying interphases. Compos. B 149, 268–284 (2018)

    Article  Google Scholar 

  11. Nazarenko, L., Stolarski, H., Altenbach, H.: A statistical interphase damage model of random particulate composites. Int. J. Plast 116, 118–142 (2019)

    Article  Google Scholar 

  12. Sokolovski, D., Kamiński, M.: Homogenization of carbon/polymer composites with anisotropic distribution of particles and stochastic interface defects. Acta Mech. 229, 3727–3765 (2018)

    Article  MathSciNet  Google Scholar 

  13. Kamiński, M.: Homogenization of particulate and fibrous composites with some non-Gaussian material uncertainties. Compos. Struct. 210, 778–786 (2019)

    Article  Google Scholar 

  14. Nazarenko, L., Bargmann, S., Stolarski, H.: Closed-form formulas for the effective properties of random particulate nanocomposites with complete Gurtin–Murdoch model of material surfaces. Continuum Mech. Thermodyn. 29(1), 77–96 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lin, C.-H., Muliana, A.: Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites. Acta Mech. 224(7), 1471–1492 (2013)

    Article  MathSciNet  Google Scholar 

  16. Nazarenko, L., Stolarski, H., Altenbach, H.: Thermo-elastic properties of random particulate nano-materials for various models of interphase. Int. J. Mech. Sci. 126, 130–141 (2017)

    Article  Google Scholar 

  17. Muc, A., Barski, M.: Design of particulate-reinforced composite materials. Materials 11, 234 (2018)

    Article  Google Scholar 

  18. Khanbareh, H., Topolov, V., Bowen, Ch.: Piezo-Particulate Composites. Manufacturing, Properties, Applications. Springer, Cham (2019)

    Book  Google Scholar 

  19. Sakata, S., Ashida, F.: Hierarchical stochastic homogenization analysis of a particle reinforced composite material considering non-uniform distribution of microscopic random quantities. Comput. Mech. 48, 529–540 (2011)

    Article  MathSciNet  Google Scholar 

  20. Khurshudyan, As.Zh.: Derivation of a mesoscopic model for nonlinear particle reinforced composites from fully microscopic model. Acta Mech. 230(10), 3543–3554 (2019)

  21. Khurshudyan, As.Zh.: A mesoscopic model for particle-reinforced composites. Continuum Mech. Thermodyn. 32, 1057–1071 (2020)

  22. Derrien, K., Morin, L., Gilormini, P.: Designing isotropic composites reinforced by aligned transversely isotropic particles of spheroidal shape. C. R. Méc. 346(12), 1123–1135 (2018)

    Article  ADS  Google Scholar 

  23. Kim, Y., Kim, Y., Libonati, F., Ryu, S.: Designing tough isotropic structural composite using computation, 3D printing and testing. Compos. B 167, 736–745 (2019)

    Article  Google Scholar 

  24. Mikhlin, S.G.: Error Analysis in Numerical Processes. Wiley, Chichester (1991)

    MATH  Google Scholar 

  25. Ambarcumyan, S.A.: Theory of Anisotropic Plates: Strength, Stability, and Vibrations. Hemispher Publishing, Washington (1991)

    Google Scholar 

  26. Teodorescu, P., Kecs, W., Toma, A.: Distribution Theory: With Applications in Engineering and Physics. Wiley-VCH, Weinheim (2013)

    Book  Google Scholar 

  27. Kamiński, M.: Computational Mechanics of Composite Materials. Sensitivity, Randomness and Multiscale Behaviour. Springer, London (2005)

    Google Scholar 

  28. Nordmann, J., Aßmus, M., Altenbach, H.: Visualising elastic anisotropy—theoretical background and computational implementation. Continuum Mech. Thermodyn. 30(4), 689–708 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Huang, L.J., Geng, L., Peng, H.-X.: Microstructurally inhomogeneous composites: is a homogeneous reinforcement distribution optimal? Prog. Mater. Sci. 71, 93–168 (2015)

    Article  Google Scholar 

  30. Kushch, V.I., Sevostianov, I.: Effective elastic properties of the particulate composite with transversely isotropic phases. Int. J. Solids Struct. 41, 885–906 (2004)

    Article  Google Scholar 

  31. Kari, S., Berger, H., Rodriguez-Ramos, R., Gabbert, U.: Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles. Compos. Struct. 77(2), 223–231 (2007)

    Article  Google Scholar 

  32. Segurado, J.: Computational micromechanics of composites: the effect of particle spatial distribution. Mech. Mater. 38, 873–883 (2006)

    Article  Google Scholar 

  33. Spring, D.W., Paulino, G.H.: Computational homogenization of the debonding of particle reinforced composites: the role of interphases in interfaces. Comput. Mater. Sci. 109, 209–224 (2015)

    Article  Google Scholar 

  34. Ju, J.W., Yanase, K.: Micromechanics and effective elastic moduli of particle-reinforced composites with near-field particle interactions. Acta Mech. 215, 135–153 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The help of Zory Davoyan (UCL, London, UK) in carrying out the simulations is highly acknowledged. The critical remarks of anonymous referees by all means increased the value of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asatur Zh. Khurshudyan.

Additional information

Communicated by Marcus Aßmus, Victor A. Eremeyev and Andreas Öchsner.

Dedicated to Professor Holm Altenbach on the occasion of his 65th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurshudyan, A.Z. The meso-scale behavior of anisotropic particle-reinforced thermo-elastic composites. Continuum Mech. Thermodyn. 33, 1363–1374 (2021). https://doi.org/10.1007/s00161-021-00985-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-00985-6

Keywords

Navigation