Skip to main content
Log in

Magneto-electro-elastic node-based smoothed point interpolation method for micromechanical analysis of natural frequencies of nanobeams

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

As an addition to the traditional finite element method (FEM), the magneto-electro-elastic node-based smoothed point interpolation method (MEE-NS-PIM) with asymptotic homogenization method (AHM) is presented to solve the micromechanical problems of MEE nanobeams, which overcomes the deficiency of FEM and improves the accuracy of the calculation results. Firstly, the basic equations of MEE medium are derived. Secondly, AHM is adopted to calculate the property parameters of MEE materials under microcosmic situations, and the AHM model is illustrated. Then, the relative formulations of the discretized system used to calculate the frequency of MEE nanostructures are deduced based on MEE-NS-PIM. Moreover, several numerical examples are calculated, and the results of MEE-NS-PIM are compared with those of FEM, which proves the convergence, precision, and effectiveness of MEE-NS-PIM. Therefore, MEE-NS-PIM combined with AHM can be used to analyze the microcosmic MEE coupling problems and obtain a more accurate and reliable solution for MEE micromechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li, Q.H., Chen, W.J., Liu, S.T., Wang, J.X.: A novel implementation of asymptotic homogenization for viscoelastic composites with periodic microstructures. Compos. Struct. 208, 276–286 (2019)

    Google Scholar 

  2. Tahani, M., Safarian, S.: Determination of rigidities, stiffness coefficients and elastic constants of multi-layer graphene sheets by an asymptotic homogenization method. J. Braz. Soc. Mech. Sci. Eng. 41(1), 3 (2019)

    Google Scholar 

  3. Jeong, S., Zhu, F., Lim, H., Kim, Y., Yun, G.J.: 3D stochastic computational homogenization model for carbon fiber reinforced CNT/epoxy composites with spatially random properties. Compos. Struct. 207, 858–870 (2019)

    Google Scholar 

  4. Shi, J., Akbarzadeh, A.H.: Architected cellular piezoelectric metamaterials: thermo-electro-mechanical properties. Acta Mater. 163, 91–121 (2019)

    Google Scholar 

  5. Shabana, Y.M., Wang, G.T.: Thermomechanical modeling of polymer nanocomposites by the asymptotic homogenization method. Acta Mech. 224(6), 1213–1224 (2013)

    MATH  Google Scholar 

  6. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  7. Miehe, C., Vallicotti, D., Teichtmeister, S.: Homogenization and multiscale stability analysis in finite magneto-electro-elasticity, Application to soft matter EE, ME and MEE composites. Comput. Method Appl. Mech. Eng. 300, 294–346 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Berger, H., Gabbert, U., Koppe, H., Rodriguez-Ramos, R., Bravo-Castillero, J., Guinovart-Diaz, R., Otero, J.A., Maugin, G.A.: Finite element and asymptotic homogenization methods applied to smart composite materials. Comput. Mech. 33(1), 61–67 (2003)

    MATH  Google Scholar 

  9. Bravo-Castillero, J., Rodriguez-Ramos, R., Mechkour, H., Otero, J.A., Sabina, F.J.: Homogenization of magneto-electro-elastic multilaminated materials. Q. J. Mech. Appl. Mech. 61, 311–332 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Challagulla, K.S., Georgiades, A.V.: Micromechanical analysis of magneto-electro-thermo-elastic composite materials with applications to multilayered structures. Int. J. Eng. Sci. 49(1), 85–104 (2011)

    Google Scholar 

  11. Tsai, Y.H., Wu, C.P.: Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int. J. Eng. Sci. 46(9), 843–857 (2008)

    MATH  Google Scholar 

  12. Li, E., Zhang, Z.P., Chang, C.C., Liu, G.R., Li, Q.: Numerical homogenization for incompressible materials using selective smoothed finite element method. Compos. Struct. 123, 216–232 (2015)

    Google Scholar 

  13. Li, E., Zhang, Z.P., Chang, C.C., Zhou, S.W., Liu, G.R., Li, Q.: A new homogenization formulation for multifunctional composites. Int. J. Comput. Methods 13(2), 1640002 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Ebrahimi, F., Barati, M.R.: Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams. Mech. Syst. Signal Process. 93, 445–459 (2017)

    Google Scholar 

  15. Farajpour, A., Yazdi, M.R.H., Rastgoo, A., Loghmani, M., Mohammadi, M.: Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Compos. Struct. 140, 323–336 (2016)

    Google Scholar 

  16. Razavi, S., Shooshtari, A.: Nonlinear free vibration of magneto-electro-elastic rectangular plates. Compos. Struct. 119, 377–384 (2015)

    Google Scholar 

  17. Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory. Acta. Mech. Sin. 30(4), 516–525 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Kattimani, S.C., Ray, M.C.: Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates. Compos. Struct. 114, 51–63 (2014)

    Google Scholar 

  19. Kattimani, S.C., Ray, M.C.: Control of geometrically nonlinear vibrations of functionally graded magneto-electro-elastic plates. Int. J. Mech. Sci. 99, 154–167 (2015)

    Google Scholar 

  20. Sladek, J., Sladek, V., Solek, P., Pan, E.: Fracture analysis of cracks in magneto-electro-elastic solids by the MLPG. Comput. Mech. 42(5), 697–714 (2008). https://doi.org/10.1007/s00466-008-0269-z

    Article  MATH  Google Scholar 

  21. Ebrahimi, F., Barati, M.R.: Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory. Smart Mater. Struct. 25(10), 105014 (2016)

    Google Scholar 

  22. Ebrahimi, F., Barati, M.R.: An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams. Adv. Nano Res. 4(2), 65–84 (2016)

    Google Scholar 

  23. Xin, L.B., Hu, Z.D.: Free vibration of simply supported and multilayered magneto-electro-elastic plates. Compos. Struct. 121, 344–350 (2015)

    Google Scholar 

  24. Liu, L.P.: An energy formulation of continuum magneto-electro-elasticity with applications. J. Mech. Phys. Solids 63, 451–480 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Li, X.Y., Ding, H.J., Chen, W.Q.: Three-dimensional analytical solution for functionally graded magneto-electro-elastic circular plates subjected to uniform load. Compos. Struct. 83(4), 381–390 (2008)

    Google Scholar 

  26. Milazzo, A., Orlando, C., Alaimo, A.: An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem. Smart Mater. Struct. 18(8), 085012 (2009)

    Google Scholar 

  27. Wu, C.P., Lu, Y.C.: A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates. Compos. Struct. 90(3), 363–372 (2009)

    Google Scholar 

  28. Wu, C.P., Chen, S.J., Chiu, K.H.: Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method. Mech. Res. Commun. 37(1), 54–60 (2010)

    MATH  Google Scholar 

  29. Chen, W.Q., Pan, E.N., Wang, H.M., Zhang, C.Z.: Theory of indentation on multiferroic composite materials. J. Mech. Phys. Solids 58(10), 1524–1551 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Liu, J., Zhang, P.C., Lin, G., Wang, W.Y., Lu, S.: Solutions for the magneto-electro-elastic plate using the scaled boundary finite element method. Eng. Anal. Bound. Elem. 68, 103–114 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Vinyas, M., Kattimani, S.C.: A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading. Struct. Eng. Mech. 62(5), 519–535 (2017)

    Google Scholar 

  32. Alaimo, A., Milazzo, A., Orlando, C.: A four-node MITC finite element for magneto-electro-elastic multilayered plates. Comput. Struct. 129, 120–133 (2013)

    Google Scholar 

  33. Alaimo, A., Benedetti, L., Milazzo, A.: A finite element formulation for large deflection of multilayered magneto-electro-elastic plates. Compos. Struct. 107, 643–653 (2014)

    Google Scholar 

  34. Moita, J.M.S., Soares, C.M.M., Soares, C.A.M.: Analyses of magneto-electro-elastic plates using a higher order finite element model. Compos. Struct. 91(4), 421–426 (2009)

    Google Scholar 

  35. Atul Daga, N.G., Shankar, K.: Studies on magnetoelectric effect for magneto-electro-elastic cylinder using finite element method. Multidiscip. Model. Mater. Struct. 5(3), 307–310 (2009)

    Google Scholar 

  36. Buroni, F.C., Saez, A.: Three-dimensional Green’s function and its derivative for materials with general anisotropic magneto-electro-elastic coupling. Proc. R. Soc. Math. Phys. Eng. Sci. 466(2114), 515–537 (2010)

    MATH  Google Scholar 

  37. Milazzo, A.: A one-dimensional model for dynamic analysis of generally layered magneto-electro-elastic beams. J. Sound Vib. 332(2), 465–483 (2013)

    Google Scholar 

  38. Milazzo, A.: Refined equivalent single layer formulations and finite elements for smart laminates free vibrations. Compos. Part B Eng. 61, 238–253 (2014)

    Google Scholar 

  39. Loja, M.A.R., Soares, C.M.M., Barbosa, J.I.: Optimization of magneto-electro-elastic composite structures using differential evolution. Compos. Struct. 107, 276–287 (2014)

    Google Scholar 

  40. Zhou, L.M., Ren, S.H., Liu, C.Y., Ma, Z.C.: A valid inhomogeneous cell-based smoothed finite element model for the transient characteristics of functionally graded magneto-electro-elastic structures. Compos. Struct. 208, 298–313 (2019)

    Google Scholar 

  41. Zhou, L.M., Li, M., Meng, G.W., Zhao, H.W.: An effective cell-based smoothed finite element model for the transient responses of magneto-electro-elastic structures. J. Intell Mater. Syst. Struct. 29(14), 3006–3022 (2018)

    Google Scholar 

  42. Zhou, L., Li, M., Ma, Z., Ren, S., Li, X., Tang, J., Ma, Z.: Steady-state characteristics of the coupled magneto-electro-thermo-elastic multi-physical system based on cell-based smoothed finite element method. Compos. Struct. 219(1), 111–128 (2019)

    Google Scholar 

  43. He, Z.C., Zhang, G.Y., Deng, L., Li, E., Liu, G.R.: Topology optimization using node-based smoothed finite element method. Int. J. Appl. Mech. 7(6), 1550085 (2015)

    Google Scholar 

  44. He, Z.C., Li, G.Y., Zhong, Z.H., Cheng, A.G., Zhang, G.Y., Li, E., Liu, G.R.: An ES-FEM for accurate analysis of 3D mid-frequency acoustics using tetrahedron mesh. Comput. Struct. 106, 125–134 (2012)

    Google Scholar 

  45. He, Z.C., Li, G.Y., Zhong, Z.H., Cheng, A.G., Zhang, G.Y., Liu, G.R., Li, E., Zhou, Z.: An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Comput. Mech. 52(1), 221–236 (2013)

    MathSciNet  MATH  Google Scholar 

  46. He, Z.C., Li, G.Y., Liu, G.R., Cheng, A.G., Li, E.: Numerical investigation of ES-FEM with various mass re-distribution for acoustic problems. Appl. Acoust. 89, 222–233 (2015)

    Google Scholar 

  47. He, Z.C., Li, E., Li, G.Y., Wu, F., Liu, G.R., Nie, X.: Acoustic simulation using alpha-FEM with a general approach for reducing dispersion error. Eng. Anal. Bound. Elem. 61, 241–253 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Jiang, Y., Li, E.: XFEM with smoothing technique for static fracture mechanics in three-dimension. Int. J. Comput. Methods 13(2), 164004 (2016)

    MathSciNet  Google Scholar 

  49. Li, E., He, Z.C., Xu, X., Liu, G.R., Gu, Y.T.: A three-dimensional hybrid smoothed finite element method (H-SFEM) for nonlinear solid mechanics problems. Acta Mech. 226(12), 4223–4245 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, G.Y., Li, Y., Gao, X.X., Hui, D., Wang, S.Q., Zong, Z.: Smoothed point interpolation method for elastoplastic analysis. Int. J. Comput. Methods 12(4), 1540013 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Zeng, W., Liu, G.R.: Smoothed finite element methods (S-FEM): an overview and recent developments. Arch. Comput. Methods Eng. 25(2), 397–435 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Cui, X.Y., Hu, X.B., Zeng, Y.: A Copula-based perturbation stochastic method for fiber-reinforced composite structures with correlations. Comput. Methods Appl. Mech. Eng. 322, 351–372 (2017)

    MathSciNet  Google Scholar 

  53. Hu, X.B., Cui, X.Y., Liang, Z.M., Li, G.Y.: The performance prediction and optimization of the fiber-reinforced composite structure with uncertain parameters. Compos. Struct. 164, 207–218 (2017)

    Google Scholar 

  54. Tootoonchi, A., Khoshghalb, A., Liu, G.R.: A novel approach for application of smoothed point interpolation methods to axisymmetric problems in poroelasticity. Comput. Geotech. 102, 39–52 (2018)

    Google Scholar 

  55. Cui, X.Y., Wang, G., Li, G.Y.: A nodal integration axisymmetric thin shell model using linear interpolation. Appl. Math. Model. 40(4), 2720–2742 (2016)

    MathSciNet  Google Scholar 

  56. Li, E., He, Z.C., Xu, X., Liu, G.R.: Hybrid smoothed finite element method for acoustic problems. Comput. Methods Appl. Mech. Eng. 283, 664–688 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Li, E., He, Z.C., Hu, J.Y., Long, X.Y.: Volumetric locking issue with uncertainty in the design of locally resonant acoustic metamaterials. Comput. Methods Appl. Mech. Eng. 324, 128–148 (2017)

    MathSciNet  Google Scholar 

  58. He, Z.C., Li, E., Wang, G., Li, G.Y., Xia, Z.W.: Development of an efficient algorithm to analyze the elastic wave in acoustic metamaterials. Acta Mech. 227(10), 3015–3030 (2016)

    MathSciNet  Google Scholar 

  59. Hu, X., Cui, X.Y., Zhang, Q.Y., Wang, G., Li, G.Y.: The stable node-based smoothed finite element method for analyzing acoustic radiation problems. Eng. Anal. Bound. Elem. 80, 142–151 (2017)

    MathSciNet  MATH  Google Scholar 

  60. Li, E., Chen, J.N., Zhang, Z.P., Fang, J.G., Liu, G.R., Li, Q.: Smoothed finite element method for analysis of multi-layered systems–applications in biomaterials. Comput. Struct. 168, 16–29 (2016)

    Google Scholar 

  61. Liu, G.R., Nguyen-Thoi, T., Nguyen-Xuan, H., Lam, K.Y.: A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput. Struct. 87(1–2), 14–26 (2009)

    Google Scholar 

  62. Bie, Y.H., Cui, X.Y., Li, Z.C.: A coupling approach of state-based peridynamics with node-based smoothed finite element method. Comput. Methods Appl. Mech. Eng. 331, 675–700 (2018)

    MathSciNet  Google Scholar 

  63. Cui, X.Y., Li, S., Feng, H., Li, G.Y.: A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process. J. Comput. Phys. 336, 192–211 (2017)

    MathSciNet  Google Scholar 

  64. Zhou, L., Nie, B., Ren, S., Liu, R., Li, X., Xue, B.: Coupling magneto-electro-elastic cell-based smoothed radial point interpolation method for static and dynamic characterization of MEE structures. Acta Mech. 230(5), 1641–1662 (2019)

    MathSciNet  Google Scholar 

  65. Liu, G.R.: A G space theory and a weakened weak (W-2) form for a unified formulation of compatible and incompatible methods: Part I theory. Int. J. Numer. Meth. Eng. 81(9), 1093–1126 (2010)

    MATH  Google Scholar 

  66. Liu, G.R.: A G space theory and a weakened weak (W-2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems. Int. J. Numer. Methods Eng. 81(9), 1127–1156 (2010)

    MATH  Google Scholar 

  67. Zhou, L.M., Li, M., Chen, B.K., Li, F., Li, X.L.: An inhomogeneous cell-based smoothed finite element method for the nonlinear transient response of functionally graded magneto-electro-elastic structures with damping factors. J. Intell. Mater. Syst. Strut. 30(3), 416–437 (2019)

    Google Scholar 

  68. Wu, S.C., Liu, G.R., Zhang, H.O., Zhang, G.Y.: A node-based smoothed point interpolation method (NS-PIM) for three-dimensional thermoelastic problems. Numer. Heat Transf. Part A Appl. 54(12), 1121–1147 (2008)

    Google Scholar 

  69. Wu, S.C., Liu, G.R., Zhang, H.O., Xu, X., Li, Z.R.: A node-based smoothed point interpolation method (NS-PIM) for three-dimensional heat transfer problems. Int. J. Therm. Sci. 48(7), 1367–1376 (2009)

    Google Scholar 

  70. Wu, S.C., Li, G.R., Zhang, H.O., Zhang, G.Y.: A node-based smoothed point interpolation method (NS-PIM) for thermoelastic problems with solution bounds. Int. J. Heat Mass Transf. 52(5–6), 1464–1471 (2009)

    MATH  Google Scholar 

  71. Du, C.F., Zhang, D.G., Li, L., Liu, G.R.: A node-based smoothed point interpolation method for dynamic analysis of rotating flexible beams. Acta. Mech. Sin. 34(2), 409–420 (2018)

    MathSciNet  MATH  Google Scholar 

  72. Zhou, L.M., Ren, S.H., Meng, G.W., Li, X.L., Cheng, F.: A multi-physics node-based smoothed radial point interpolation method for transient responses of magneto-electro-elastic structures. Eng. Anal. Bound. Elem. 101, 371–384 (2019)

    MathSciNet  MATH  Google Scholar 

  73. Pan, E.: Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials. Z. Angew. Math. Phys. 53(5), 815–838 (2002)

    MathSciNet  MATH  Google Scholar 

  74. Annigeri, A.R., Ganesan, N., Swarnamani, S.: Free vibration behaviour of multiphase and layered magneto-electro-elastic beam. J. Sound Vib. 299(1–2), 44–63 (2007)

    Google Scholar 

  75. Li, Y., Liu, G.R., Yue, J.H.: A novel node-based smoothed radial point interpolation method for 2D and 3D solid mechanics problems. Comput. Struct. 196, 157–172 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Number 11502092]; Jilin Provincial Science Foundation for Youths [Grant Number 20160520064JH]; Supported by Graduate Innovation Fund of Jilin University [Grant Number 101832018C184]; Foundation Sciences Jilin Provincial [Grant Number 20170101043JC]; Educational Commission of Jilin Province of China [Grant Numbers JJKH20180084KJ and JJKH20190131KJ].

Author contributions LZ and PL contributed to the research concept and design. SR, BN and HY contributed to the writing of the article and collection of data. PL contributed to the research concept, design, and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Data availability

All data included in this study are available upon request by contact with the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Substituting Eqs. (27) and (30) into Eq. (24) and equating like powers of \(\eta \), we have

$$\begin{aligned} T_{ij}^{(0)}= & {} c_{ijkl} \left( {\frac{{\varvec{\partial }} u_{k}^{(0)} }{{\varvec{\partial }} x_{l} }+\frac{{\varvec{\partial }} u_{k}^{(1)} }{{\varvec{\partial }} y_{l} }} \right) -e_{kij} E_{k}^{(0)} -q_{kij} H_{k}^{(0)}, \end{aligned}$$
(A.1)
$$\begin{aligned} T_{ij}^{(1)}= & {} c_{ijkl} \left( {\frac{{\varvec{\partial }} u_{k}^{(1)} }{{\varvec{\partial }} x_{l} }+\frac{{\varvec{\partial }} u_{k}^{(2)} }{{\varvec{\partial }} y_{l} }} \right) -e_{kij} E_{k}^{(1)} -q_{kij} H_{k}^{(1)}. \end{aligned}$$
(A.2)

Then, substituting Eqs. (27) and (28) into Eq. (25), Eqs. (27) and (29) into Eq. (26), we asymptotically expand the electric displacement and magnetic induction:

$$\begin{aligned} D_{i}^{(0)}= & {} c_{ikl} \left( {\frac{{\varvec{\partial }} u_{k}^{(0)} }{{\varvec{\partial }} x_{l} }+\frac{{\varvec{\partial }} u_{k}^{(1)} }{{\varvec{\partial }} y_{l} }} \right) +\varepsilon _{ik} E_{k}^{(0)} +m_{ik} H_{k}^{(0)}, \end{aligned}$$
(A.3)
$$\begin{aligned} D_{i}^{(1)}= & {} c_{ikl} \left( {\frac{{\varvec{\partial }} u_{k}^{(1)} }{{\varvec{\partial }} x_{l} }+\frac{{\varvec{\partial }} u_{k}^{(2)} }{{\varvec{\partial }} y_{l} }} \right) +\varepsilon _{ik} E_{k}^{(1)} +m_{ik} H_{k}^{(1)}, \end{aligned}$$
(A.4)
$$\begin{aligned} B_{i}^{(0)}= & {} q_{jkl} \left( {\frac{{\varvec{\partial }} u_{k}^{(0)} }{{\varvec{\partial }} x_{l} }+\frac{{\varvec{\partial }} u_{k}^{(1)} }{{\varvec{\partial }} y_{l} }} \right) +m_{ik} E_{k}^{(0)} +\mu _{ik} H_{k}^{(0)}, \end{aligned}$$
(A.5)
$$\begin{aligned} B_{i}^{(1)}= & {} q_{jkl} \left( {\frac{{\varvec{\partial }} u_{k}^{(1)} }{{\varvec{\partial }} x_{l} }+\frac{{\varvec{\partial }} u_{k}^{(2)} }{{\varvec{\partial }} y_{l} }} \right) +m_{ik} E_{k}^{(1)} +\mu _{ik} H_{k}^{(1)}. \end{aligned}$$
(A.6)

The set of effective coefficients related to the MEE nanostructure is given as below:

$$\begin{aligned} \tilde{{c}}_{ijkl}= & {} \frac{1}{\left| Y \right| }\int _Y {\left( {c_{ijkl} ({\mathbf{y}})+c_{ijmn} ({\mathbf{y}})\frac{{\varvec{\partial }} N_{m}^{kl} }{{\varvec{\partial }} y_{n} }} \right) \text {d}\theta }, \end{aligned}$$
(A.7)
$$\begin{aligned} \tilde{{e}}_{ijk}= & {} \frac{1}{\left| Y \right| }\int _Y {\left( {e_{ijk} ({\mathbf{y}})-c_{ijmn} ({\mathbf{y}})\frac{{\varvec{\partial }} N_{m}^{i} }{{\varvec{\partial }} y_{n} }} \right) \text {d}\theta } =\frac{1}{\left| Y \right| }\int _Y {\left( {e_{ijk} ({\mathbf{y}})+e_{imn} ({\mathbf{y}})\frac{{\varvec{\partial }} N_{m}^{jk} }{{\varvec{\partial }} y_{n} }} \right) \text {d}\theta }, \end{aligned}$$
(A.8)
$$\begin{aligned} \tilde{{\varepsilon }}_{ij}= & {} \frac{1}{\left| Y \right| }\int _Y {\left( {\varepsilon _{ij} ({\mathbf{y}})+e_{imn} ({\mathbf{y}})\frac{{\varvec{\partial }} N_{m}^{j} }{{\varvec{\partial }} y_{n} }} \right) \text {d}\theta }, \end{aligned}$$
(A.9)
$$\begin{aligned} \tilde{{q}}_{ijk}= & {} \frac{1}{\left| Y \right| }\int _Y {\left( {\tilde{{q}}_{ijk} ({\mathbf{y}})-c_{jkmn} ({\mathbf{y}})\frac{{\varvec{\partial }} M_{m}^{i} }{{\varvec{\partial }} y_{n} }} \right) \text {d}\theta } =\frac{1}{\left| Y \right| }\int _Y {\left( {q_{ijk} ({\mathbf{y}})+q_{imn} ({\mathbf{y}})\frac{{\varvec{\partial }} N_{m}^{jk} }{{\varvec{\partial }} y_{n} }} \right) \text {d}\theta }, \end{aligned}$$
(A.10)
$$\begin{aligned} \tilde{{m}}_{ijk}= & {} \frac{1}{\left| Y \right| }\int _Y {\left( {m_{ij} ({\mathbf{y}})+e_{imn} ({\mathbf{y}})\frac{{\varvec{\partial }} M_{m}^{j} }{{\varvec{\partial }} y_{n} }} \right) \text {d}\theta } =\frac{1}{\left| Y \right| }\int _Y {\left( {m_{ij} ({\mathbf{y}})+q_{imn} ({\mathbf{y}})\frac{{\varvec{\partial }} N_{m}^{j} }{{\varvec{\partial }} y_{n} }} \right) \text {d}\theta }, \end{aligned}$$
(A.11)
$$\begin{aligned} \tilde{{\mu }}_{ij}= & {} \frac{1}{\left| Y \right| }\int _Y {\left( {\mu _{ij} ({\mathbf{y}})+q_{imn} ({\mathbf{y}})\frac{{\varvec{\partial }} M_{m}^{j} }{{\varvec{\partial }} y_{n} }} \right) \text {d}\theta }. \end{aligned}$$
(A.12)

The local functions \(N_{m}^{kl} \), \(N_{m}^{i} \), \(M_{m}^{i} \), and \(W_{m}^{k} \) in Eqs. (41)–(46) satisfy the relevant unit-cell problems and should be first calculated from the appropriate unit-cell problems and then used to obtain the effective coefficients.

The effective coefficients of MEE materials were determined based on the AHM as follows [10]:

$$\begin{aligned} \tilde{{c}}_{11}= & {} \left\langle {c_{11} } \right\rangle -\left\langle {c_{12}^{2} c_{22}^{-1} } \right\rangle +\left\langle {c_{12} c_{22}^{-1} } \right\rangle ^{2}\left\langle {c_{22}^{-1} } \right\rangle ^{-1}, \tilde{{c}}_{12} =\left\langle {c_{12} c_{22}^{-1} } \right\rangle \left\langle {c_{22}^{-1} } \right\rangle ^{-1}, \end{aligned}$$
(A.13)
$$\begin{aligned} \tilde{{c}}_{13}= & {} \left\langle {c_{13} } \right\rangle -\left\langle {c_{12} c_{23} c_{22}^{-1} } \right\rangle +\left\langle {c_{12} c_{22}^{-1} } \right\rangle \left\langle {c_{22}^{-1} } \right\rangle ^{-1}\left\langle {c_{23} c_{22}^{-1} } \right\rangle , \tilde{{c}}_{22} =\left\langle {c_{22}^{-1} } \right\rangle ^{-1}, \end{aligned}$$
(A.14)
$$\begin{aligned} \tilde{{c}}_{33}= & {} \left\langle {c_{\text {33}} } \right\rangle -\left\langle {c_{23}^{2} c_{22}^{-1} } \right\rangle +\left\langle {c_{23} c_{22}^{-1} } \right\rangle ^{2}\left\langle {c_{22}^{-1} } \right\rangle ^{-1}, \tilde{{c}}_{23} =\left\langle {c_{23} c_{22}^{-1} } \right\rangle \left\langle {c_{22}^{-1} } \right\rangle ^{-1}, \end{aligned}$$
(A.15)
$$\begin{aligned} \tilde{{c}}_{44}= & {} \left\langle {c_{44}^{-1} } \right\rangle ^{-1}, \tilde{{c}}_{55} =\left\langle {c_{55}^{-1} } \right\rangle ^{-1}, \tilde{{c}}_{66} =\left\langle {c_{66}^{-1} } \right\rangle ^{-1}, \end{aligned}$$
(A.16)
$$\begin{aligned} \tilde{{e}}_{31}= & {} \left\langle {e_{31} } \right\rangle -\left\langle {c_{12} e_{32} c_{22}^{-1} } \right\rangle +\left\langle {c_{12} c_{22}^{-1} } \right\rangle \left\langle {c_{22}^{-1} } \right\rangle ^{-1}\left\langle {e_{32} c_{22}^{-1} } \right\rangle , \tilde{{e}}_{32} =\left\langle {c_{22}^{-1} } \right\rangle ^{-1}\left\langle {e_{32} c_{22}^{-1} } \right\rangle , \end{aligned}$$
(A.17)
$$\begin{aligned} \tilde{{e}}_{33}= & {} \left\langle {e_{33} } \right\rangle -\left\langle {c_{23} e_{32} e_{22}^{-1} } \right\rangle +\left\langle {c_{23} c_{22}^{-1} } \right\rangle \left\langle {c_{22}^{-1} } \right\rangle ^{-1}\left\langle {e_{32} c_{22}^{-1} } \right\rangle , \tilde{{e}}_{24} =\left\langle {c_{44}^{-1} } \right\rangle ^{-1}\left\langle {e_{24} c_{44}^{-1} } \right\rangle , \end{aligned}$$
(A.18)
$$\begin{aligned} \tilde{{e}}_{15}= & {} \left\langle {e_{15} } \right\rangle , \end{aligned}$$
(A.19)
$$\begin{aligned} \tilde{{\varepsilon }}_{11}= & {} \left\langle {\varepsilon _{11} } \right\rangle , \tilde{{\varepsilon }}_{22} =\left\langle {\varepsilon _{22} } \right\rangle +\left\langle {e_{24}^{2} c_{44}^{-1} } \right\rangle -\left\langle {e_{24} c_{44}^{-1} } \right\rangle ^{2}\left\langle {c_{44}^{-1} } \right\rangle ^{-1}, \end{aligned}$$
(A.20)
$$\begin{aligned} \tilde{{\varepsilon }}_{33}= & {} \left\langle {\varepsilon _{33} } \right\rangle +\left\langle {e_{32}^{2} c_{22}^{-1} } \right\rangle -\left\langle {e_{32} c_{22}^{-1} } \right\rangle ^{2}\left\langle {c_{22}^{-1} } \right\rangle ^{-1}, \end{aligned}$$
(A.21)
$$\begin{aligned} \tilde{{q}}_{31}= & {} \left\langle {q_{31} } \right\rangle -\left\langle {c_{12} q_{32} c_{22}^{-1} } \right\rangle +\left\langle {c_{12} c_{22}^{-1} } \right\rangle \left\langle {c_{22}^{-1} } \right\rangle ^{-1}\left\langle {q_{32} c_{22}^{-1} } \right\rangle , \tilde{{q}}_{32} =\left\langle {c_{22}^{-1} } \right\rangle ^{-1}\left\langle {q_{32} c_{22}^{-1} } \right\rangle , \end{aligned}$$
(A.22)
$$\begin{aligned} \tilde{{q}}_{33}= & {} \left\langle {q_{33} } \right\rangle -\left\langle {c_{23} q_{32} c_{22}^{-1} } \right\rangle +\left\langle {c_{23} c_{22}^{-1} } \right\rangle \left\langle {c_{22}^{-1} } \right\rangle ^{-1}\left\langle {q_{32} c_{22}^{-1} } \right\rangle , \tilde{{q}}_{24} =\left\langle {c_{44}^{-1} } \right\rangle ^{-1}\left\langle {q_{24} c_{44}^{-1} } \right\rangle , \end{aligned}$$
(A.23)
$$\begin{aligned} \tilde{{q}}_{15}= & {} \left\langle {q_{15} } \right\rangle , \end{aligned}$$
(A.24)
$$\begin{aligned} \tilde{{m}}_{11}= & {} \left\langle {m_{11} } \right\rangle , \tilde{{m}}_{22} =\left\langle {m_{22} } \right\rangle +\left\langle {e_{24} q_{24} c_{44}^{-1} } \right\rangle -\left\langle {e_{24} c_{44}^{-1} } \right\rangle \left\langle {c_{44}^{-1} } \right\rangle ^{-1}\left\langle {q_{24} c_{44}^{-1} } \right\rangle , \end{aligned}$$
(A.25)
$$\begin{aligned} \tilde{{m}}_{33}= & {} \left\langle {m_{33} } \right\rangle +\left\langle {e_{32} q_{32} c_{22}^{-1} } \right\rangle -\left\langle {e_{32} c_{22}^{-1} } \right\rangle \left\langle {c_{22}^{-1} } \right\rangle ^{-1}\left\langle {q_{32} c_{22}^{-1} } \right\rangle , \end{aligned}$$
(A.26)
$$\begin{aligned} \tilde{{\mu }}_{11}= & {} \left\langle {\mu _{11} } \right\rangle , \tilde{{\mu }}_{22} =\left\langle {\mu _{22} } \right\rangle +\left\langle {q_{24}^{2} c_{44}^{-1} } \right\rangle -\left\langle {q_{24} c_{44}^{-1} } \right\rangle ^{2}\left\langle {c_{44}^{-1} } \right\rangle ^{-1}, \end{aligned}$$
(A.27)
$$\begin{aligned} \tilde{{\mu }}_{33}= & {} \left\langle {\mu _{33} } \right\rangle +\left\langle {q_{32}^{2} c_{22}^{-1} } \right\rangle -\left\langle {q_{32} c_{22}^{-1} } \right\rangle ^{2}\left\langle {c_{22}^{-1} } \right\rangle ^{-1} \end{aligned}$$
(A.28)

where the quantities in the angular bracket refer to averaged quantities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Ren, S., Nie, B. et al. Magneto-electro-elastic node-based smoothed point interpolation method for micromechanical analysis of natural frequencies of nanobeams. Acta Mech 230, 3645–3666 (2019). https://doi.org/10.1007/s00707-019-02489-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02489-6

Navigation