Skip to main content
Log in

Accurate bending analysis of rectangular thin plates with corner supports by a unified finite integral transform method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, for the first time, the double finite integral transform method is introduced to explore the analytical bending solutions of rectangular thin plates with corner supports. Introducing the concept of generalized simply supported edge, the general form analytical solutions for bending of the plates under consideration are obtained by applying the finite integral transform to the governing equation and some of the boundary conditions. The analytical bending solutions of plates under specific boundary conditions are then obtained elegantly by imposing the remaining boundary conditions. Compared with the conventional inverse/semi-inverse methods, the present method is straightforward without any predetermination of solution forms, which makes it very attractive for exploring new analytical bending solutions of plates with complex boundary conditions. Another advantage of the method is that the analytical solutions obtained converge rapidly due to utilization of the sum functions. Comprehensive analytical results obtained in this paper illuminate the validity and accuracy of the present method by comparison with those from the literature and the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, Auckland (1959)

    MATH  Google Scholar 

  2. Bhaskar, K., Sivaram, A.: Untruncated infinite series superposition method for accurate flexural analysis of isotropic/orthotropic rectangular plates with arbitrary edge conditions. Compos. Struct. 83, 83–92 (2008)

    Article  Google Scholar 

  3. Thai, H.-T., Kim, S.-E.: Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates. Int. J. Mech. Sci. 54, 269–276 (2012)

    Article  Google Scholar 

  4. Lee, S.L., Ballesteros, P.: Uniformly loaded rectangular plate supported at the corners. Int. J. Mech. Sci. 2, 206–211 (1960)

    Article  Google Scholar 

  5. Wang, C.M., Wang, Y.C., Reddy, J.N.: Problems and remedy for the Ritz method in determining stress resultants of corner supported rectangular plates. Comput. Struct. 80, 145–154 (2002)

    Article  Google Scholar 

  6. Lim, C.W., Yao, W.A., Cui, S.: Benchmark symplectic solutions for bending of corner-supported rectangular thin plates. IES J. Part A: Civ. Struct. Eng. 1, 106–115 (2008)

    Google Scholar 

  7. Lim, C.W., Xu, X.S.: Symplectic elasticity: theory and applications. Appl. Mech. Rev. 63, 050802 (2010)

    Article  Google Scholar 

  8. Lim, C.W., Lü, C.F., Xiang, Y., Yao, W.: On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. Int. J. Eng. Sci. 47, 131–140 (2009)

    Article  MathSciNet  Google Scholar 

  9. Li, R., Wang, B., Li, P.: Hamiltonian system-based benchmark bending solutions of rectangular thin plates with a corner point-supported. Int. J. Mech. Sci. 85, 212–218 (2014)

    Article  Google Scholar 

  10. Li, R., Wang, B., Li, G.: Benchmark bending solutions of rectangular thin plates point-supported at two adjacent corners. Appl. Math. Lett. 40, 53–58 (2015)

    Article  MathSciNet  Google Scholar 

  11. Batista, M.: New analytical solution for bending problem of uniformly loaded rectangular plate supported on corner points. IES J. Part A: Civ. Struct. Eng. 3, 75–84 (2010)

    Google Scholar 

  12. Chowdhury, A.R., Wang, C.M.: Bending, buckling, and vibration of equilateral simply supported or clamped triangular plates with rounded corners. J. Eng. Mech. 142, 04016074 (2016)

    Article  Google Scholar 

  13. Yshii, L.N., Lucena Neto, E., Monteiro, F.A.C., Santana, R.C.: Accuracy of the buckling predictions of anisotropic plates. J. Eng. Mech. 144, 04018061 (2018)

    Article  Google Scholar 

  14. Thai, C.H., Ferreira, A.J.M., Wahab, M.A., Nguyen-Xuan, H.: A moving Kriging meshfree method with naturally stabilized nodal integration for analysis of functionally graded material sandwich plates. Acta Mech. 229, 2997–3023 (2018)

    Article  MathSciNet  Google Scholar 

  15. Thai, C.H., Nguyen, T.N., Rabczuk, T., Nguyen-Xuan, H.: An improved moving Kriging meshfree method for plate analysis using a refined plate theory. Comput. Struct. 176, 34–49 (2010)

    Article  Google Scholar 

  16. Thai, C.H., Do, V.N.V., Nguyen-Xuan, H.: An improved moving Kriging-based meshfree method for static, dynamic and buckling analyses of functionally graded isotropic and sandwich plates. Eng. Anal. Bound. Elem. 64, 122–136 (2016)

    Article  MathSciNet  Google Scholar 

  17. Nguyen, T.N., Thai, C.H., Nguyen-Xuan, H.: A novel computational approach for functionally graded isotropic and sandwich plate structures based on a rotation-free meshfree method. Thin-Walled Struct. 107, 473–488 (2016)

    Article  Google Scholar 

  18. Thai, C.H., Ferreira, A.J.M., Rabczuk, T., Nguyen-Xuan, H.: A naturally stabilized nodal integration meshfree formulation for carbon nanotube-reinforced composite plate analysis. Eng. Anal. Bound. Elem. 92, 136–155 (2018)

    Article  MathSciNet  Google Scholar 

  19. Thai, C.H., Ferreira, A.J.M., Carrera, E., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Compos. Struct. 104, 196–214 (2013)

    Article  Google Scholar 

  20. Thai, C.H., Ferreira, A.J.M., Bordas, S.P.A., Rabczuk, T., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. Eur. J. Mech. - A/Solids 43, 89–108 (2014)

    Article  Google Scholar 

  21. Nguyen, T.N., Thai, C.H., Nguyen-Xuan, H.: On the general framework of high order shear deformation theories for laminated composite plate structures: A novel unified approach. Int. J. Mech. Sci. 110, 242–255 (2016)

    Article  Google Scholar 

  22. Thai, C.H., Ferreira, A.J.M., Wahab, M.A., Nguyen-Xuan, H.: A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis. Acta Mech. 227, 1225–1250 (2016)

    Article  MathSciNet  Google Scholar 

  23. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Solid Mechanics. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  24. Shi, G.: Flexural vibration and buckling analysis of orthotropic plates by the boundary element method. Int. J. Solids Struct. 26, 1351–1370 (1990)

    Article  Google Scholar 

  25. Cheung, Y.K.: Finite Strip Method in Structural Analysis. Elsevier, Netherlands (2013)

    Google Scholar 

  26. Sneddon, I.N.: Application of Integral Transforms in the Theory of Elasticity. Springer, New York (1975)

    MATH  Google Scholar 

  27. Zhong, Y., Zhang, Y.S.: Free vibration of rectangular thin plate on elastic foundation with four edges free. J. Vib. Eng. 19, 566–570 (2006)

    Google Scholar 

  28. Li, R., Zhong, Y., Tian, B., Liu, Y.: On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Appl. Math. Lett. 22, 1821–1827 (2009)

    Article  MathSciNet  Google Scholar 

  29. Tian, B., Zhong, Y., Li, R.: Analytic bending solutions of rectangular cantilever thin plates. Arch. Civ. Mech. Eng. 11, 1043–1052 (2011)

    Article  Google Scholar 

  30. Tian, B., Li, R., Zhong, Y.: Integral transform solutions to the bending problems of moderately thick rectangular plates with all edges free resting on elastic foundations. Appl. Math. Model. 39, 128–136 (2015)

    Article  MathSciNet  Google Scholar 

  31. Zhang, S., Xu, L.: Bending of rectangular orthotropic thin plates with rotationally restrained edges: a finite integral transform solution. Appl. Math. Model. 46, 48–62 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zhang, S., Xu, L.: Analytical solutions for flexure of rectangular orthotropic plates with opposite rotationally restrained and free edges. Arch. Civ. Mech. Eng. 18, 965–972 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the LiaoNing Revitalization Talents Program (XLYC1807126, XLYC1802020), the National Natural Science Foundation of China (11825202), the Young Elite Scientists Sponsorship Program by CAST (No. 2015QNRC001) and the Fundamental Research Funds for the Central Universities of China (No. DUT18GF101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Sum functions used in the main text

Appendix: Sum functions used in the main text

$$\begin{aligned} \Phi _{1n} \left( x \right)= & {} \frac{2}{a}\sum _{m=1}^\infty {A_{mn} \sin \left( {\alpha _m x} \right) },\;\;\;\Phi _{2n} \left( x \right) =\frac{2}{a}\sum _{m=1}^\infty {\left( {-1} \right) ^{m}A_{mn} \sin \left( {\alpha _m x} \right) }, \nonumber \\ \Phi _{3n} \left( x \right)= & {} \frac{2}{a}\sum _{m=1}^\infty {B_{mn} \sin \left( {\alpha _m x} \right) },\;\;\;\Phi _{4n} \left( x \right) =\frac{2}{a}\sum _{m=1}^\infty {\left( {-1} \right) ^{m}B_{mn} \sin \left( {\alpha _m x} \right) }, \nonumber \\ \Psi _{1m} \left( y \right)= & {} \frac{2}{b}\sum _{n=1}^\infty {C_{mn} \sin \left( {\beta _n y} \right) },\;\;\;\Psi _{2m} \left( y \right) =\frac{2}{b}\sum _{n=1}^\infty {\left( {-1} \right) ^{n}C_{mn} \sin \left( {\beta _n y} \right) }, \nonumber \\ \Psi _{3m} \left( y \right)= & {} \frac{2}{b}\sum _{n=1}^\infty {D_{mn} \sin \left( {\beta _n y} \right) },\;\;\;\Psi _{4m} \left( y \right) =\frac{2}{b}\sum _{n=1}^\infty {\left( {-1} \right) ^{n}D_{mn} \sin \left( {\beta _n y} \right) }, \nonumber \\ R_n \left( x \right)= & {} \frac{2}{a}\sum _{m=1}^\infty {E_{mn} \sin \left( {\alpha _m x} \right) },\;\;\;\;S_m \left( y \right) =\frac{2}{b}\sum _{n=1}^\infty {E_{mn} \sin \left( {\beta _n y} \right) }, \end{aligned}$$
(A1)

where \(A_{mn} =\frac{\alpha _m }{\left( {\alpha _m^2 +\beta _n^2 } \right) ^{2}}\), \(B_{mn} =\frac{\alpha _m \left[ {\alpha _m^2 +\left( {2-\mu } \right) \beta _n^2 } \right] }{\left( {\alpha _m^2 +\beta _n^2 } \right) ^{2}}\), \(C_{mn} =\frac{\beta _n }{\left( {\alpha _m^2 +\beta _n^2 } \right) ^{2}}\), \(D_{mn} =\frac{\beta _n \left[ {\left( {2-\mu } \right) \alpha _m^2 +\beta _n^2 } \right] }{\left( {\alpha _m^2 +\beta _n^2 } \right) ^{2}}\) and \(E_{mn} =\frac{q_{mn} }{D\left( {\alpha _m^2 +\beta _n^2 } \right) ^{2}}\). When \(m=1,3,5,\ldots , \quad \Phi _{2n} \left( x \right) =-\Phi _{1n} \left( x \right) \), \(\Phi _{4n} \left( x \right) =-\Phi _{3n} \left( x \right) \), and the sum functions of the sine series give

$$\begin{aligned} \Phi _{1n} \left( x \right)&=\frac{1}{4\beta _n^2 \cosh \frac{\delta _n }{2}}\left\{ {\frac{\delta _n }{2}\tanh \frac{\delta _n }{2}\cosh \left[ {\beta _n \left( {x-\frac{a}{2}} \right) } \right] -\beta _n \left( {x-\frac{a}{2}} \right) \sinh \left[ {\beta _n \left( {x-\frac{a}{2}} \right) } \right] } \right\} , \end{aligned}$$
(A2)
$$\begin{aligned} \Phi _{3n} \left( x \right)&=\frac{1-\mu }{4\cosh \frac{\delta _n }{2}}\left\{ {\left( {\frac{\delta _n }{2}\tanh \frac{\delta _n }{2}+\frac{2}{1-\mu }} \right) \cosh \left[ {\beta _n \left( {x-\frac{a}{2}} \right) } \right] -\beta _n \left( {x-\frac{a}{2}} \right) \sinh \left[ {\beta _n \left( {x-\frac{a}{2}} \right) } \right] } \right\} , \end{aligned}$$
(A3)

where \(\delta _n ={an \pi }/b\). When \(m=2,4,6,\ldots , \quad \Phi _{2n} \left( x \right) =\Phi _{1n} \left( x \right) , \quad \Phi _{4n} \left( x \right) =\Phi _{3n} \left( x \right) \), and the sum functions give

$$\begin{aligned} \Phi _{1n} \left( x \right)= & {} -\frac{1}{4\beta _n^2 \sinh \frac{\delta _n }{2}}\left\{ {\frac{\delta _n }{2}\coth \frac{\delta _n }{2}\sinh \left[ {\beta _n \left( {x-\frac{a}{2}} \right) } \right] -\beta _n \left( {x-\frac{a}{2}} \right) \cosh \left[ {\beta _n \left( {x-\frac{a}{2}} \right) } \right] } \right\} , \end{aligned}$$
(A4)
$$\begin{aligned} \Phi _{3n} \left( x \right)= & {} -\frac{1-\mu }{4\sinh \frac{\delta _n }{2}}\left\{ {\left( {\frac{\delta _n }{2}\coth \frac{\delta _n }{2}+\frac{2}{1-\mu }} \right) \sinh \left[ {\beta _n \left( {x-\frac{a}{2}} \right) } \right] -\beta _n \left( {x-\frac{a}{2}} \right) \cosh \left[ {\beta _n \left( {x-\frac{a}{2}} \right) } \right] } \right\} . \end{aligned}$$
(A5)

For uniform external load \(q\left( {x,y} \right) =q_0 \), \(q_{mn} =4\big /{\left( {\alpha _m \beta _n } \right) } \left( {m,n=1,3,5,\ldots } \right) \), and the sum function gives

$$\begin{aligned} R_n \left( x \right)= & {} \frac{2}{a}\sum _{m=1,3,5,\ldots }^\infty {E_{mn} } \sin \left( {\alpha _m x} \right) \nonumber \\= & {} -\frac{q_0 }{D\beta _n^5 }\left\{ {\cosh \frac{\delta _n }{2}\left[ {\begin{array}{l} \left( {\frac{\delta _n }{2}\tanh \frac{\delta _n }{2}+2} \right) \cosh \left[ {\beta _n \left( {x-\frac{a}{2}} \right) } \right] \\ -\beta _n \left( {x-\frac{a}{2}} \right) \sinh \left[ {\beta _n \left( {x-\frac{a}{2}} \right) } \right] \\ \end{array}} \right] -2} \right\} . \end{aligned}$$
(A6)

The expressions of \(\Psi _{1m} \left( y \right) -\Psi _{4m} \left( y \right) \) and \(S_m \left( y \right) \) can be obtained by replacing the items of \(\Phi _{1n} \left( x \right) -\Phi _{4n} \left( x \right) \) and \(R_n \left( x \right) \) according to the following rules: \(x\rightarrow y\), \(m\rightarrow n\), \(a\rightarrow b\), \(\beta _n \rightarrow \alpha _m \), \(\delta _n ={an\pi }/b\rightarrow \gamma _m ={bm\pi }/a\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhou, C., Ullah, S. et al. Accurate bending analysis of rectangular thin plates with corner supports by a unified finite integral transform method. Acta Mech 230, 3807–3821 (2019). https://doi.org/10.1007/s00707-019-02488-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02488-7

Navigation