Skip to main content
Log in

Maxwell homogenization scheme for piezoelectric composites with arbitrarily-oriented spheroidal inhomogeneities

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, the effective electro-elastic properties of piezoelectric composites are computed using the Maxwell homogenization method (MHM). The composites are made by several families of spheroidal inhomogeneities embedded in a homogeneous infinite medium (matrix). Each family of spheroidal inhomogeneities is made of the same material, and all the inhomogeneities have identical size and shape and are randomly oriented. The inhomogeneities and matrix materials exhibit piezoelectric transversely isotropic symmetry. It is shown that the shape of the “effective inclusion” substantially affects the effective piezoelectric properties. A new and simple form to calculate the aspect ratio of effective inclusion is presented. The effect on the overall piezoelectric properties due to the orientation of the inhomogeneities and different families of piezoelectric inhomogeneities is discussed. The MHM approach is applied in two examples, material with inhomogeneities having scatter orientation and composites with two different families of spheroidal inhomogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maxwell, J.: A Treatise on Electricity and Magnetism. Clarendon Press, Oxford (1873)

    MATH  Google Scholar 

  2. Kuster, G., Toksöz, M.N.: Velocity and attenuation of seismic waves in two-phase media I. Theoretical formulations. Geophysics 39, 587–606 (1974)

    Article  Google Scholar 

  3. Shen, L., Yi, S.: An effective inclusion model for effective moduli of heterogeneous materials with ellipsoidal inhomogeneities. Int. J. Solids Struct. 38, 5789–5805 (2001)

    Article  Google Scholar 

  4. McCartney, L., Kelly, A.: Maxwell’s far-field methodology applied to the prediction of properties of multi-phase isotropic particulate composites. Proc. R. Soc. Lond. A 464, 423–446 (2008)

    Article  MathSciNet  Google Scholar 

  5. McCartney, L.: Maxwell’s far-field methodology predicting elastic properties of multiphase composites reinforced with aligned transversely isotropic spheroids. Philos. Mag. 90, 4175–4207 (2010)

    Article  Google Scholar 

  6. Sevostianov, I., Giraud, A.: Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape. Int. J. Eng. Sci. 64, 23–36 (2013)

    Article  Google Scholar 

  7. Sevostianov, I.: On the shape of effective inclusion in the Maxwell homogenization scheme for anisotropic elastic composites. Mech. Mater. 75, 45–59 (2014)

    Article  Google Scholar 

  8. Kushch, V., Mogilevskaya, S., Stolarski, H., Crouch, S.: Evaluation of the effective elastic moduli of particulate composites based on Maxwell’s concept of equivalent inhomogeneity: microstructure-induced anisotropy. J. Mech. Mater. Struct. 8, 283–303 (2012)

    Article  Google Scholar 

  9. Vilchevskaya, E., Sevostianov, I.: Scattering and attenuation of elastic waves in random media. Int. J. Eng. Sci. 94, 139–149 (2015)

    Article  Google Scholar 

  10. Gandarilla-Pérez, C.A., Rodríguez-Ramos, R., Sevostianov, I., Sabina, F.J., Bravo-Castillero, J., Guinovart-Díaz, R., Lau-Alfonso, L.: Extension of Maxwell homogenization scheme for piezoelectric composites containing spheroidal inhomogeneities. Int. J. Solids Struct. 135, 125–136 (2017). https://doi.org/10.1016/j.ijsolstr.2017.11.015

    Article  Google Scholar 

  11. Li, J.Y., Dunn, M.L.: Variational bounds for the effective moduli of heterogeneous piezoelectric solids. Philos. Mag. A 81, 903–926 (2001)

    Article  Google Scholar 

  12. Min, C., Yu, D., Cao, J., Wang, G., Feng, L.: A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon 55, 116–125 (2013)

    Article  Google Scholar 

  13. Wang, D., Zhang, X., Zha, J.-W., Zhao, J., Dang, Z.-M., Hu, G.-H.: Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54, 1916–1922 (2013)

    Article  Google Scholar 

  14. Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., Tang, B., Chan, M., Kim, J.-K.: Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014)

    Article  Google Scholar 

  15. Xia, X., Wang, Y., Zhong, Z., Weng, G.J.: A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams. J. Appl. Phys. 120, 085102 (2016)

    Article  Google Scholar 

  16. Xia, X., Mazzeo, A.D., Zhong, Z., Weng, G.J.: An X-band theory of electromagnetic interference shielding for graphene-polymer nanocomposites. J. Appl. Phys. 122, 025104 (2017)

    Article  Google Scholar 

  17. Xia, X., Wang, Y., Zhong, Z., Weng, G.J.: A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon 111, 221–230 (2017)

    Article  Google Scholar 

  18. Weng, G.J.: A dynamical theory for the Mori–Tanaka and Ponte Castañeda–Willis estimates. Mech. Mater. 42(9), 886–893 (2010)

    Article  Google Scholar 

  19. Wang, Y., Weng, G.J., Meguid, S.A., Hamouda, A.M.: A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys. 115(19), 193706 (2014)

    Article  Google Scholar 

  20. Wang, Y., Su, Y., Li, J., Weng, G.J.: A theory of magnetoelectric coupling with interface effects and aspect-ratio dependence in piezoelectric-piezomagnetic composites. J. Appl. Phys. 117(16), 164106 (2015)

    Article  Google Scholar 

  21. Kachanov, M., Sevostianov, I.: On quantitative characterization of microstructures and effective properties. Int. J. Solids Struct. 42, 309–336 (2005)

    Article  Google Scholar 

  22. Chou, T., Nomura, S.: Fibre orientation effects on the thermoelastic properties of short-fiber composites. Sci. Technol. 14, 279–291 (1981)

    Google Scholar 

  23. Takao, Y., Chou, T., Taya, M.: Effective longitudinal Young’s modulus of misoriented short fiber composites. J. Appl. Mech. 49, 536–540 (1982)

    Article  Google Scholar 

  24. Ferrari, M., Johnson, M.: Effective elasticities of short-fiber composites with arbitrary orientation distribution. Mech. Mater. 8, 67–73 (1989)

    Article  Google Scholar 

  25. Barnett, D., Lothe, J.: Dislocations and line charges in anisotropic piezoelectric insulators. Phys. Status Solidi B 67, 105–111 (1975)

    Article  Google Scholar 

  26. Levin, V.M., Michelitsch, T., Sevostianov, I.: Spheroidal inhomogeneity in the transversely isotropic piezoelectric medium. Arch. Appl. Mech. 70, 673–693 (2000)

    Article  Google Scholar 

  27. Rodríguez-Ramos, R., Gandarilla-Pérez, C., Otero, J.: Static effective characteristics in piezoelectric composite materials. Math. Methods Appl. Sci. 40, 3249–3264 (2017)

    Article  MathSciNet  Google Scholar 

  28. Dunn, M.: Electroelastic Green’s functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems. Int. J. Eng. Sci. 32, 119–131 (1994)

    Article  MathSciNet  Google Scholar 

  29. Lu, Y., Liaw, P.: Effect of particle orientation in silicon-carbide particle-reinforced aluminium-matrix composite extrusions on ultrasonic velocity-measurements. J. Compos. Mater. 29, 1096–1116 (1995)

    Article  Google Scholar 

  30. Chen, C., Wang, Y.: Effective thermal conductivity of misoriented short fiber reinforced thermoplastics. Mech. Mater. 23, 217–228 (1996)

    Article  Google Scholar 

  31. Pettermann, H., Böhm, H., Rammerstorfer, F.: Some direction dependent properties of matrix-inclusion type composites with given reinforcement orientation distributions. Compos. Part B Eng. 28, 253–265 (1997)

    Article  Google Scholar 

  32. Fu, S., Lauke, B.: The elastic modulus of misaligned short-fiber-reinforced polymers. Compos. Sci. Technol. 58, 389–400 (1998)

    Article  Google Scholar 

  33. Sevostianov, I., Kachanov, M.: Modeling of the anisotropic elastic properties of plasma-sprayed coatings in relation to their microstructure. Acta Mater. 48, 1361–1370 (2000)

    Article  Google Scholar 

  34. Sevostianov, I., Levin, V., Radi, E.: Effective viscoelastic properties of short-fiber reinforced composites. Int. J. Eng. Sci. 100, 61–73 (2016)

    Article  MathSciNet  Google Scholar 

  35. Mishurova, T., Rachmatulin, N., Fontana, P., Oesch, T., Bruno, G., Radi, E., Sevostianov, I.: Evaluation of the probability density of inhomogeneous fiber orientations by computed tomography and its application to the calculation of the effective properties of a fiber-reinforced composite. Int. J. Eng. Sci. 122, 14–29 (2018)

    Article  Google Scholar 

  36. Giraud, A., Huynh, Q., Hoxha, D., Kondo, D.: Effective poroelastic properties of transversely isotropic rock-like composites with arbitrarily oriented ellipsoidal inclusions. Mech. Mater. 39, 1006–1024 (2007)

    Article  Google Scholar 

  37. Kachanov, M., Tsukrov, I., Shafiro, B.: Effective properties of solids with randomly located defects. In: Breusse, D. (ed.) Probabilities and Materials: Tests Models and Applications, pp. 225–240. Kluwer Publications, Dordrecht (1994)

    Chapter  Google Scholar 

  38. Levin, V.: The effective properties of piezoactive matrix composite materials. J. Appl. Math. Mech. 60(2), 309–317 (1996)

    Article  Google Scholar 

  39. Berlincourt, D.A.: Piezoelectric Crystals and Ceramics. Ultrasonic Transducer Materials. Springer, Boston (1971)

    Google Scholar 

  40. Chan, H., Unsworth, J.: Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(4), 434 (1989)

    Article  Google Scholar 

  41. Kar-Gupta, R., Venkatesh, T.: Electromechanical response of 1–3 piezoelectric composite: effect of poling characteristics. J. Appl. Phys. 98, 054102 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The funding of Proyecto Nacional de Ciencias Básicas 2013-2015 (Project No. 7515) is gratefully acknowledged. Thanks to the Mathematics and Mechanics Department at IIMAS-UNAM and FENOMEC for their support and to Ramiro Chávez Tovar and Ana Pérez Arteaga for computational assistance. The authors would like to thank the project PHC Carlos J. Finlay 2018 Project No. 39142TA (France–Cuba) and the French embassy in Havana for their support on travel expenses of PhD students in 2018. The author Rodríguez-Ramos would like to thank MyM-IIMAS-UNAM and PREI-DGAPA-UNAM for the financial support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rodríguez-Ramos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. \({\mathbf {T}}\), \({\mathbf {U}}\), \({\mathbf {t}}\) tensor bases representation

The electro-elastic properties of a piezoelectric transversely isotropic material can be represented in the form

$$\begin{aligned} \begin{aligned} {\mathbf {C}}(\phi ,\theta )&= C_{11} {\mathbf {T}}^{1}(\phi ,\theta ) + C_{12} ({\mathbf {T}}^{2}(\phi ,\theta ) - {\mathbf {T}}^{1}(\phi ,\theta ))\\&\quad + C_{13} ({\mathbf {T}}^{3}(\phi ,\theta ) + {\mathbf {T}}^{4}(\phi ,\theta )) + 4C_{44} {\mathbf {T}}^{5}(\phi ,\theta ) + C_{33} {\mathbf {T}}^{6}(\phi ,\theta ), \\ \mathbf {e(\phi ,\theta )}&= e_{31} {\mathbf {U}}^{1}(\phi ,\theta ) + e_{15} {\mathbf {U}}^{2}(\phi ,\theta ) + e_{33} {\mathbf {U}}^{3}(\phi ,\theta ), \\ {\varvec{\epsilon }} (\phi ,\theta )&= \epsilon _{33} {\mathbf {t}}^{1}(\phi ,\theta ) + \epsilon _{11} {\mathbf {t}}^{2}(\phi ,\theta ) \end{aligned} \end{aligned}$$
(A.1)

where \(C_{11}\), \(C_{12}\), \(C_{13}\), \(C_{33}\), \(C_{44}\) are five independent elastic moduli of the transversely isotropic medium, \(e_{31}\), \(e_{15}\), \(e_{33}\) are three piezoelectric constants, and \(\epsilon _{33}\), \(\epsilon _{11}\) are two permittivities. The quantities \({\mathbf {T}}^{i}(\phi ,\theta )\), \({\mathbf {U}}^{i}(\phi ,\theta )\), \({\mathbf {t}}^{i}(\phi ,\theta )\) are the elements of the tensor basis defined in Ref. [38] as follows:

$$\begin{aligned} \begin{aligned} T_{ijkl}^{1}(\phi ,\theta )&= \frac{1}{2}(\theta _{ik}\theta _{lj} + \theta _{il}\theta _{kj}), \qquad T_{ijkl}^{2}(\phi ,\theta ) = \theta _{ij}\theta _{kl}, \\ T_{ijkl}^{3}(\phi ,\theta )&= \theta _{ij}m_{k}m_{l}, \qquad T_{ijkl}^{4}(\phi ,\theta ) = m_{i}m_{j}\theta _{kl}, \\ T_{ijkl}^{5}(\phi ,\theta )&= \frac{1}{4}\left( \theta _{ik}m_{l}m_{j}+ \theta _{il}m_{k}m_{j}+\theta _{jk}m_{l}m_{i} + \theta _{jl} m_{k}m_{i}\right) , \\ T_{ijkl}^{6}(\phi ,\theta )&= m_{i}m_{j}m_{k}m_{l}, \\ U_{ijk}^{1}(\phi ,\theta )&= \theta _{ij}m_{k}, \qquad U_{ijk}^{2}(\phi ,\theta ) = m_{i}\theta _{jk}+m_{j}\theta _{ik}, \qquad U_{ijk}^{3}(\phi ,\theta ) = m_{i}m_{j}m_{k}, \\ t_{ij}^{1}(\phi ,\theta )&= m_{i}m_{j}, \qquad t_{ij}^{2}(\phi ,\theta ) = \theta _{ij}, \\ \theta _{ij}(\phi ,\theta )&= \delta _{ij}-m_{i}(\phi ,\theta )m_{j}(\phi ,\theta ) \end{aligned} \end{aligned}$$
(A.2)

where \(m_{i}(\phi ,\varphi ) = (\cos \theta \sin \phi ,\sin \theta \sin \phi ,\cos \phi )\) is the unit vector along the symmetry axis of the material and is defined by Eq. (3.9).

The average electro-elastic properties of a composite in which the inhomogeneities have arbitrary orientations are given by integrating over the different orientations,

$$\begin{aligned} \begin{aligned} {\mathbf {C}}^{p}&= \int _{0}^{\pi /2}\mathrm {d}\phi \, P_{p}(\phi )\sin \phi \left\{ \int _{0}^{2\pi }\mathrm {d}\theta \Big [C_{11}{\mathbf {T}}^{1}(\phi ,\theta ) + C_{12} \left( {\mathbf {T}}^{2}(\phi ,\theta ) - {\mathbf {T}}^{1}(\phi ,\theta )\right) \right. \\&\quad \left. +\, C_{13} ({\mathbf {T}}^{3}(\phi ,\theta ) + {\mathbf {T}}^{4}(\phi ,\theta )) + 4C_{44} {\mathbf {T}}^{5}(\phi ,\theta ) + C_{66} {\mathbf {T}}^{6}(\phi ,\theta )\Big ]\right\} , \\ {\mathbf {e}}^{p}&= \int _{0}^{\pi /2}\mathrm {d}\phi \, P_{p}(\phi )\sin \phi \int _{0}^{2\pi }\mathrm {d}\theta \Big [e_{31}{\mathbf {U}}^{1}(\phi ,\theta ) + e_{15} {\mathbf {U}}^{2}(\phi ,\theta ) + e_{33} {\mathbf {U}}^{3}(\phi ,\theta )\Big ], \\ {\varvec{\epsilon }} ^{p}&= \int _{0}^{\pi /2}\mathrm {d}\phi \, P_{p}(\phi )\sin \phi \int _{0}^{2\pi }\mathrm {d}\theta \Big [\epsilon _{33} {\mathbf {t}}^{1}(\phi ,\theta ) + \epsilon _{11} {\mathbf {t}}^{2}(\phi ,\theta )\Big ], \end{aligned} \end{aligned}$$
(A.3)

after taking into account Eqs. (A.1) and (3.10). The functions \(P_{\lambda }(\phi )\) and \(P_{\sigma }(\phi )\) described in Eqs. (3.6) and (3.7), respectively, are represented by the function \(P_{p}(\phi )\). The components of \({\mathbf {C}}^{p}\), \({\mathbf {e}}^{p}\), and \({\varvec{\epsilon }}^{p}\) are given by

$$\begin{aligned} \begin{aligned} C_{11}^{(p)}&= g_{11}(p) C_{11} + g_{12}(p) C_{13} + \frac{3}{8}g_{6}(p) C_{33} + 2g_{12}(p) C_{44}, \\ C_{12}^{(p)}&= \frac{1}{8}g_{6}(p) C_{11} + (1-2g_{1}(p)) C_{12} + g_{10}(p) C_{13} + \frac{1}{8}g_{6}(p) C_{33} -\frac{1}{2}g_{6}(p) C_{44}, \\ C_{13}^{(p)}&= g_{4}(p) C_{11} + g_{1}(p) C_{12} + g_{5}(p) C_{13} + g_{4}(p) C_{33} - 4g_{4}(p) C_{44}, \\ C_{33}^{(p)}&= g_{6}(p) C_{11} + 4g_{4}(p) C_{13} + g_{7}(p) C_{33} + 8g_{4}(p) C_{44}, \\ C_{44}^{(p)}&= g_{8}(p) C_{11} - \frac{1}{2}g_{1}(p) C_{12} - 2g_{4}(p) C_{13} + g_{4}(p) C_{33} + g_{9}(p) C_{44}, \\ e_{31}^{(p)}&= (g_{2}(p) + g_{3}(p)) e_{31} - 2g_{2}(p) e_{15} + g_{2}(p) e_{33}, \\ e_{15}^{(p)}&= - g_{2}(p) e_{31} + g_{3}(p) e_{15} + g_{2}(p) e_{33}, \\ e_{33}^{(p)}&= 2g_{2}(p) e_{31} + 4g_{2}(p) e_{15} + g_{3}(p) e_{33}, \\ \epsilon _{11}^{(p)}&= (1 - g_{1}(p)) \epsilon _{11} + g_{1}(p) \epsilon _{33}, \\ \epsilon _{33}^{(p)}&= 2g_{1}(p) \epsilon _{11} + (1 - 2g_{1}(p)) \epsilon _{33}. \end{aligned} \end{aligned}$$
(A.4)

When \(p = \lambda \), the functions \(g_{i}(\lambda )\) are defined as

$$\begin{aligned} \begin{aligned} g_{1}(\lambda )&= \frac{3}{9+\lambda ^{2}}-\lambda e^{-\frac{\pi }{2}\lambda }\frac{3+\lambda ^{2}}{6(9+\lambda ^{2})}, \\ g_{2}(\lambda )&= \frac{e^{-\frac{\pi }{2}\lambda }\bigg (40+ 24e^{\frac{\pi }{2}\lambda }(1+\lambda ^{2})+\lambda (64+\lambda ( 44+\lambda (20+\lambda (4+\lambda ))))\bigg )}{8(4+\lambda ^{2})(16+\lambda ^{2})}, \\ g_{3}(\lambda )&= \frac{e^{-\frac{\pi }{2}\lambda }\bigg (24+ 4e^{\frac{\pi }{2}\lambda }(1+\lambda ^{2})(10+\lambda ^{2})+ \lambda (64+\lambda (24+20\lambda +\lambda ^{3}))\bigg )}{4(4+\lambda ^{2})(16+\lambda ^{2})}, \\ g_{4}(\lambda )&= \frac{3(5+\lambda ^{2})}{(9+\lambda ^{2})(25+\lambda ^{2})}+\lambda e^{-\frac{\pi }{2}\lambda }\frac{12+(1+\lambda ^{2}) (18+\lambda ^{2})}{15(9+\lambda ^{2})(25+\lambda ^{2})}, \\ g_{5}(\lambda )&= \frac{96+(1+\lambda ^{2})(24+\lambda ^{2})}{(9+\lambda ^{2})(25+\lambda ^{2})}+\lambda e^{-\frac{\pi }{2}\lambda }\frac{192+(1+\lambda ^{2}) (63+\lambda ^{2})}{30(9+\lambda ^{2})(25+\lambda ^{2})}, \\ g_{6}(\lambda )&= \frac{1800}{15(9+\lambda ^{2})(25+\lambda ^{2})} -\lambda e^{-\frac{\pi }{2}\lambda }\frac{435+178\lambda ^{2}+ 7\lambda ^{4}}{15(9+\lambda ^{2})(25+\lambda ^{2})}, \\ g_{7}(\lambda )&= \frac{24+(1+\lambda ^{2})(21+\lambda ^{2})}{(9+\lambda ^{2})(25+\lambda ^{2})}+\lambda e^{-\frac{\pi }{2}\lambda }\frac{72+(1+\lambda ^{2}) (33+\lambda ^{2})}{5(9+\lambda ^{2})(25+\lambda ^{2})}, \\ g_{8}(\lambda )&= \frac{3(35+3\lambda ^{2})}{2(9+\lambda ^{2})(25+\lambda ^{2})}-\lambda e^{-\frac{\pi }{2}\lambda }\frac{192+(1+\lambda ^{2}) (63+\lambda ^{2})}{60(9+\lambda ^{2})(25+\lambda ^{2})}, \\ g_{9}(\lambda )&= \frac{10+\lambda ^{2}}{25+\lambda ^{2}}-\lambda e^{-\frac{\pi }{2}\lambda }\frac{-5+\lambda ^{2}}{10(25+\lambda ^{2})}, \\ g_{10}(\lambda )&= \frac{6(20+\lambda ^{2})}{(9+\lambda ^{2})(25+\lambda ^{2})}-\lambda e^{-\frac{\pi }{2}\lambda }\frac{1065+382\lambda ^{2}+ 13\lambda ^{4}}{60(9+\lambda ^{2})(25+\lambda ^{2})}, \\ g_{11}(\lambda )&= \frac{93+(1+\lambda ^{2})(27+\lambda ^{2})}{(9+\lambda ^{2})(25+\lambda ^{2})}+\lambda e^{-\frac{\pi }{2}\lambda }\frac{1695+586\lambda ^{2}+ 19\lambda ^{4}}{120(9+\lambda ^{2})(25+\lambda ^{2})}, \\ g_{12}(\lambda )&= \frac{6(10+\lambda ^{2})}{(9+\lambda ^{2})(25+\lambda ^{2})}+\lambda e^{-\frac{\pi }{2}\lambda }\frac{-195-26\lambda ^{2}+ \lambda ^{4}}{60(9+\lambda ^{2})(25+\lambda ^{2})}. \end{aligned} \end{aligned}$$
(A.5)

For \(p = \sigma \), the functions \(g_{i}(\sigma )\) are defined as follows:

$$\begin{aligned} g_{1}(\sigma )= & {} \frac{\sigma \coth \sigma - 1}{\sigma ^{2}}, \nonumber \\ g_{2}(\sigma )= & {} \text {csch}\sigma \frac{\sigma ^{2} + 2(3 + \sigma ^{2})\cosh \sigma - 6\sigma \sinh \sigma - 6}{2\sigma ^{3}},\nonumber \\ g_{3}(\sigma )= & {} \frac{6\sigma + \sigma ^{3} -3(2 + \sigma ^{2}) \coth \sigma + 6\text {csch}\sigma }{\sigma ^{3}},\nonumber \\ g_{4}(\sigma )= & {} \frac{-12 - 5\sigma ^{2} - \sigma (12 + \sigma ^{2}) \coth \sigma }{\sigma ^{4}},\nonumber \\ g_{5}(\sigma )= & {} (8 + \sigma ^{2})\frac{3 + \sigma ^{2} - 3\sigma \coth \sigma }{\sigma ^{4}},\nonumber \\ g_{6}(\sigma )= & {} \frac{24 + 8\sigma ^{2} - 24\sigma \coth \sigma }{\sigma ^{4}},\\ g_{7}(\sigma )= & {} \frac{24 + 12\sigma ^{2} + \sigma ^{4} - 4\sigma (6 + \sigma ^{2})\coth \sigma }{\sigma ^{4}},\nonumber \\ g_{8}(\sigma )= & {} \frac{-24 - 11\sigma ^{2} + 3\sigma (8 + \sigma ^{2}) \coth \sigma }{2\sigma ^{4}},\nonumber \\ g_{9}(\sigma )= & {} \frac{48 + 21\sigma ^{2} + \sigma ^{4} - \sigma (48 + 5\sigma ^{2})\coth \sigma }{\sigma ^{4}},\nonumber \\ g_{10}(\sigma )= & {} \frac{-6 - 4\sigma ^{2} + 2\sigma (3 + \sigma ^{2}) \coth \sigma }{\sigma ^{4}},\nonumber \\ g_{11}(\sigma )= & {} \frac{9 + 5\sigma ^{2} + \sigma ^{4} - \sigma (9 + 2\sigma ^{2})\coth \sigma }{\sigma ^{4}},\nonumber \\ g_{12}(\sigma )= & {} 2\frac{-9 - 4\sigma ^{2} + \sigma (9 + \sigma ^{2}) \coth \sigma }{\sigma ^{4}}.\nonumber \end{aligned}$$
(A.6)

Taking the limit of parallel orientations \(p\rightarrow \infty \), the components of \(\mathbf{C }^{(p)}\), \(\mathbf{e }^{(p)}\), \({\varvec{\epsilon }}^{(p)}\) have the following form:

$$\begin{aligned} \begin{aligned} \lim \limits _{p\rightarrow \infty } C_{11}^{(p)}&= C_{11}, \qquad \lim \limits _{p\rightarrow \infty } C_{12}^{(p)} = C_{12}, \qquad \lim \limits _{p\rightarrow \infty } C_{13}^{(p)} = C_{13}, \qquad \lim \limits _{p\rightarrow \infty } C_{33}^{(p)} = C_{33}, \\ \lim \limits _{p\rightarrow \infty } C_{44}^{(p)}&= C_{44}, \qquad \lim \limits _{p\rightarrow \infty } e_{31}^{(p)} = e_{31}, \qquad \lim \limits _{p\rightarrow \infty } e_{15}^{(p)} = e_{15}, \qquad \lim \limits _{p\rightarrow \infty } e_{33}^{(p)} = e_{33}, \\ \lim \limits _{p\rightarrow \infty } \epsilon _{11}^{(p)}&= \epsilon _{11}, \qquad \lim \limits _{p\rightarrow \infty } \epsilon _{33}^{(p)} = \epsilon _{33}, \end{aligned} \end{aligned}$$
(A.7)

after substitution of \(g_{i}(\lambda )\) or \(g_{i}(\sigma )\) into Eq. (A.4). The limits in Eq. (A.7) are in agreement with the representation of a transversely isotropic medium \(\mathbf{C }(0,\theta )\), \(\mathbf{e }(0,\theta )\), \({\varvec{\epsilon }}(0,\theta )\) in the tensor basis given by Eq. (A.2).

Appendix B. Components of the tensors \(\bar{{\mathbf {S}}}^{(r)}_{x}\), \(\bar{{\mathbf {M}}}^{(r)}_{x}\), \(\bar{{\mathbf {S}}}^{(r)}_{,x}\), and \(\bar{{\mathbf {M}}}^{(r)}_{,x}\).

The tensor \({\mathbf {S}}^{(r)}_{x}\) is given by Eq. (2.5). Due to the \(\varphi \) and u dependence in Eq. (2.5), the only non-vanishing components of \(S^{(r)}_{x(klij)}\) are \(S^{(r)}_{x(1111)} = S^{(r)}_{x(2222)}\), \(S^{(r)}_{x(1122)} = S^{(r)}_{x(2211)}\), \(S^{(r)}_{x(3333)}\), \(S^{(r)}_{x(1133)} = S^{(r)}_{x(2233)} = S^{(r)}_{x(3311)} = S^{(r)}_{x(3322)}\), \(S^{(r)}_{x(2323)} = S^{(r)}_{x(2332)} = S^{(r)}_{x(3223)} = S^{(r)}_{x(3232)} = S^{(r)}_{x(1313)} =S^{(r)}_{x(1331)} = S^{(r)}_{x(3113)} = S^{(r)}_{x(3131)}\) and \(S^{(r)}_{x(1212)} = S^{(r)}_{x(1221)} = S^{(r)}_{x(2112)} = S^{(r)}_{x(2121)}\). Then, using the Voigt two-index notation,

$$\begin{aligned} S^{(r)}_{x(11)}&= \int _{-1}^{1}\mathrm {d}u\, \frac{1-u^{2}}{4\pi |{\bar{\Gamma }}_{li}|} \Big (\Lambda _{c}(\Lambda _{a}+3\Gamma _{b})- \Lambda ^{2}_{ac}\Big ), \end{aligned}$$
(B. 1)
$$\begin{aligned} S^{(r)}_{x(12)}&= \int _{-1}^{1}\mathrm {d}u\, \frac{1-u^{2}}{4\pi |{\bar{\Gamma }}_{li}|} \Big (\Lambda ^{2}_{ac}- \Lambda _{ab}\Lambda _{c}\Big ), \end{aligned}$$
(B. 2)
$$\begin{aligned} S^{(r)}_{x(13)}&= \int _{-1}^{1}\mathrm {d}u\, \frac{u\sqrt{1-u^{2}}}{4\pi |{\bar{\Gamma }}_{li}|} \Lambda _{ac}\Big (\Lambda _{ab}-\Lambda _{a}- 3\Gamma _{b}\Big ), \end{aligned}$$
(B. 3)
$$\begin{aligned} S^{(r)}_{x(33)}&= \int _{-1}^{1}\mathrm {d}u\, \frac{u^{2}}{4\pi |{\bar{\Gamma }}_{li}|} \Big (\Lambda ^{2}_{a}-\Lambda ^{2}_{ab}+ 6\Lambda _{a}\Gamma _{b}+\Gamma ^{2}_{b}\Big ), \end{aligned}$$
(B. 4)
$$\begin{aligned} S^{(r)}_{x(44)}&= \int _{-1}^{1}\mathrm {d}u\, \frac{1-u^{2}}{8\pi |{\bar{\Gamma }}_{li}|} \Big (\Lambda ^{2}_{a}-\Lambda ^{2}_{ab}+ 6\Lambda _{a}\Gamma _{b}+\Gamma ^{2}_{b}\Big ) \nonumber \\&\quad + \int _{-1}^{1}\mathrm {d}u\, \frac{u\sqrt{1-u^{2}}}{2\pi |{\bar{\Gamma }}_{li}|} \Lambda _{ac}\Big (\Lambda _{ab}-\Lambda _{a}- 3\Gamma ^{0}_{b}\Big ) \nonumber \\&\quad +\int _{-1}^{1}\mathrm {d}u\, \frac{u^{2}}{\pi |{\bar{\Gamma }}_{li}|} \Big (\Lambda _{c}(\Lambda _{a}+\Gamma _{b})- \Lambda ^{2}_{ac}\Big ), \end{aligned}$$
(B. 5)
$$\begin{aligned} S^{(r)}_{x(66)}&= \int _{-1}^{1}\mathrm {d}u\, \frac{1-u^{2}}{8\pi |{\bar{\Gamma }}_{li}|} \Big (\Lambda _{c}(\Lambda _{a}+3\Gamma _{b}+ \Lambda _{ab})-2\Lambda ^{2}_{ac}\Big ). \end{aligned}$$
(B. 6)

Here, the determinant \(|{\bar{\Gamma }}_{li}|\) of \({\bar{\Gamma }}_{li}\) is given by

$$\begin{aligned} |{\bar{\Gamma }}_{li}| = -\frac{\Gamma _{b}}{\epsilon }\Big (2\Gamma _{ac}\gamma _{a}\gamma _{c}- \Gamma _{a}\gamma ^{2}_{c}+ \epsilon \Gamma ^{2}_{ac}-\Gamma _{c} \Big (\gamma ^{2}_{a}+\epsilon \Gamma _{a}\Big )\Big ) \end{aligned}$$
(B. 7)

where \(\Lambda _{a}({\varvec{\zeta }})\), \(\Lambda _{ab}({\varvec{\zeta }})\), \(\Lambda _{ac}({\varvec{\zeta }})\), \(\Lambda _{c}({\varvec{\zeta }})\), \(\Gamma _{a}({\varvec{\zeta }})\), \(\Gamma _{b}({\varvec{\zeta }})\), \(\Gamma _{c}({\varvec{\zeta }})\), \(\Gamma _{ab}({\varvec{\zeta }})\), \(\Gamma _{ac}({\varvec{\zeta }})\), \(\gamma _{a}({\varvec{\zeta }})\), \(\gamma _{c}({\varvec{\zeta }})\), and \(\epsilon ({\varvec{\zeta }})\) are given by

$$\begin{aligned} \begin{aligned} \Lambda _{a}({\varvec{\zeta }})&= \Gamma _{a}({\varvec{\zeta }})+ \frac{\gamma _{a}^{2}({\varvec{\zeta }})}{\epsilon ({\varvec{\zeta }})},&\Lambda _{ab}({\varvec{\zeta }})&= \Gamma _{ab}({\varvec{\zeta }}) +\frac{\gamma _{a}^{2}({\varvec{\zeta }})}{\epsilon ({\varvec{\zeta }})}, \\ \Lambda _{ac}({\varvec{\zeta }})&= \Gamma _{ac}({\varvec{\zeta }})+ \frac{\gamma _{a}({\varvec{\zeta }}) \gamma _{c}({\varvec{\zeta }})}{\epsilon ({\varvec{\zeta }})},&\Lambda _{c}({\varvec{\zeta }})&= \Gamma _{c}({\varvec{\zeta }})+ \frac{\gamma _{c}^{2}({\varvec{\zeta }})}{\epsilon ({\varvec{\zeta }})}, \\ \Gamma _{a}({\varvec{\zeta }})&= \frac{1}{a^{2}_{r}}\left( C^{0}_{11}(1-u^{2})+ \frac{C^{0}_{44} u^{2}}{\delta ^{2}_{r}}\right) ,&\Gamma _{ab}({\varvec{\zeta }})&= \frac{C^{0}_{11}+C^{0}_{12}}{2 a^{2}_{r}}(1-u^{2}), \\ \Gamma _{b}({\varvec{\zeta }})&= \frac{1}{a^{2}_{r}}\left( C^{0}_{66}(1-u^{2})+ \frac{C^{0}_{44} u^{2}}{\delta ^{2}_{r}}\right) ,&\Gamma _{ac}({\varvec{\zeta }})&= \frac{C^{0}_{13}+C^{0}_{44}}{a^{2}_{r}\delta _{r}} u\sqrt{1-u^{2}}, \\ \Gamma _{c}({\varvec{\zeta }})&= \frac{1}{a^{2}_{r}}\left( C^{0}_{44}(1-u^{2})+ \frac{C^{0}_{33} u^{2}}{\delta ^{2}_{r}}\right) ,&\gamma _{a}({\varvec{\zeta }})&= \frac{e^{0}_{31}+e^{0}_{15}}{a^{2}_{r}\delta _{r}} u\sqrt{1-u^{2}}, \\ \gamma _{c}({\varvec{\zeta }})&= \frac{1}{a^{2}_{r}}\left( e^{0}_{15}(1-u^{2})+ \frac{e^{0}_{33} u^{2}}{\delta ^{2}_{r}}\right) ,&\epsilon ({\varvec{\zeta }})&= \frac{1}{a^{2}_{r}}\left( \epsilon ^{0}_{11}(1-u^{2})+ \frac{\epsilon ^{0}_{33} u^{2}}{\delta ^{2}_{r}}\right) . \end{aligned} \end{aligned}$$
(B. 8)

The tensor \({\mathbf {S}}^{(r)}_{,x}\) is obtained from Eq. (2.6). The only nonzero components of \(S^{(r)}_{,x(k4ij)}\) are \(S^{(r)}_{,x(1413)} = S^{(r)}_{,x(2423)} = S^{(r)}_{,x(1431)} = S^{(r)}_{,x(2432)}\), \(S^{(r)}_{,x(3411)} = S^{(r)}_{x(3422)}\), and \(S^{(r)}_{,x(3433)}\), due to the \(\varphi \) and u dependence in Eq. (2.6). Then, in Voigt’s notation,

$$\begin{aligned} S^{(r)}_{,x(31)}&= \int _{-1}^{1}\mathrm {d}u\, \frac{u\sqrt{1-u^{2}}}{4\pi \epsilon |{\bar{\Gamma }}_{li}|} \bigg (\Lambda _{a}-\Lambda _{ab}+3\Gamma _{b}\bigg ) \bigg (\Lambda _{c}\gamma _{a} - \Lambda _{ac}\gamma _{c}\bigg ), \end{aligned}$$
(B. 9)
$$\begin{aligned} S^{(r)}_{,x(15)}&= \int _{-1}^{1}\mathrm {d}u\, \frac{u\sqrt{1-u^{2}}}{\pi \epsilon |{\bar{\Gamma }}_{li}|} \bigg (\Lambda _{a}-\Lambda _{ab}+3\Gamma _{b}\bigg ) \bigg (\Lambda _{c}\gamma _{a}- \Lambda _{ac}\gamma _{c}\bigg ) \nonumber \\&\quad +\int _{-1}^{1}\mathrm {d}u\, \frac{1-u^{2}}{4\pi \epsilon |{\bar{\Gamma }}_{li}|} \gamma _{c}\bigg (\Lambda ^{2}_{a}- \Lambda ^{2}_{ab}+6\Lambda _{a}\Gamma _{b} +\Gamma ^{2}_{b}\bigg ) \nonumber \\&\quad +\int _{-1}^{1}\mathrm {d}u\,\frac{1-u^{2}}{2\pi \epsilon |{\bar{\Gamma }}_{li}|}\Lambda _{ac}\gamma _{a} \bigg (\Lambda _{ab}-\Lambda _{a}-3\Gamma _{b}\bigg ), \end{aligned}$$
(B. 10)
$$\begin{aligned} S^{(r)}_{,x(33)}&= \int _{-1}^{1}\mathrm {d}u\, \frac{u^{2}}{4\pi \epsilon |{\bar{\Gamma }}_{li}|} \gamma _{c}\bigg (\Lambda ^{2}_{a}- \Lambda ^{2}_{ab}+6\Lambda _{a}\Gamma _{b} +\Gamma ^{2}_{b}\bigg ) \nonumber \\&\quad +\int _{-1}^{1}\mathrm {d}u\, \frac{u^{2}}{4\pi \epsilon |{\bar{\Gamma }}_{li}|} 2\Lambda _{ac}\gamma _{a}\bigg (\Lambda _{ab}- \Lambda _{a}-3\Gamma _{b}\bigg ). \end{aligned}$$
(B. 11)

The tensor \({\mathbf {M}}^{(r)}_{,x}\) is given by Eq. (2.7). Due to the \(\varphi \) and u dependence in Eq. (2.7), the only nonzero components of \(M^{(r)}_{,x(k44j)}\) are \(M^{(r)}_{,x(1441)} = M^{(r)}_{,x(2442)}\) and \(M^{(r)}_{,x(3443)}\). Then

$$\begin{aligned} M^{(r)}_{,x(11)}&= \int _{-1}^{1}\mathrm {d}u\frac{1-u^{2}}{4} \bigg (\epsilon -\frac{\Gamma _{b}}{|\Gamma _{ij}|} \Big (\gamma _{c}(2\Gamma _{ac}\gamma _{a}- \Gamma _{a}\gamma _{c})- \Gamma _{c}\gamma ^{2}_{a}\Big )\bigg )^{-1}, \end{aligned}$$
(B. 12)
$$\begin{aligned} M^{(r)}_{,x(33)}&= \int _{-1}^{1}\mathrm {d}u\frac{u^{2}}{2} \bigg (\epsilon -\frac{\Gamma _{b}}{|\Gamma _{ij}|} \Big (\gamma _{c}(2\Gamma _{ac}\gamma _{a}- \Gamma _{a}\gamma _{c})- \Gamma _{c}\gamma ^{2}_{a}\Big )\bigg )^{-1}. \end{aligned}$$
(B. 13)

Here, the determinant \(|\Gamma _{li}|\) of \(\Gamma _{li}\) is written as

$$\begin{aligned} |\Gamma _{li}| = -\Gamma _{b}\Big ( \Gamma ^{2}_{ac}-\Gamma _{a}\Gamma _{c}\Big ). \end{aligned}$$
(B. 14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Ramos, R., Gandarilla-Pérez, C.A., Lau-Alfonso, L. et al. Maxwell homogenization scheme for piezoelectric composites with arbitrarily-oriented spheroidal inhomogeneities. Acta Mech 230, 3613–3632 (2019). https://doi.org/10.1007/s00707-019-02481-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02481-0

Navigation