Skip to main content
Log in

Nonlinear dynamic analysis of shell structures by the formulation based on a discrete shear gap

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, a shear locking-free three-node shell element based on Mindlin–Reissner theory is presented for a nonlinear dynamic analysis including sheet metal forming. In the present formulation, only displacement and rotational degrees of freedom are utilized, and the discrete shear gap of each field node is deduced using rotations of all three field nodes in a local coordinate system by the integral from the fictitious central point to the corresponding field node, which makes it alleviate the shear locking phenomenon. In order to validate the availability in solving nonlinear dynamic problems, several benchmark problems and sheet metal forming applications are employed. The results show potentiality in application to practical problems because of the simple implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Phung-Van, P., Nguyen, L.B., Tran, L.V., Dinh, T.D., Thai, C.H., Bordas, S.P.A., Abdel-Wahab, M., Nguyen-Xuan, H.: An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. Int. J. Non Linear Mech. (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.06.003

    Article  Google Scholar 

  2. Phung-Van, P., Tran, L.V., Ferreira, A.J.M., Nguyen-Xuan, H., Abdel-Wahab, M.: Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear Dyn. (2017). https://doi.org/10.1007/s11071-016-3085-6

    Article  MATH  Google Scholar 

  3. Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q., Bordas, S.P.A.: NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos. Struct. (2013). https://doi.org/10.1016/j.compstruct.2012.11.008

    Article  Google Scholar 

  4. Pagani, M., Reese, S., Perego, U.: Computationally efficient explicit nonlinear analyses using reduced integration-based solid-shell finite elements. Comput. Methods Appl. Mech. Eng. (2014). https://doi.org/10.1016/j.cma.2013.09.005

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, Y., Cui, X., Li, G., Liu, W.: A parallel finite element procedure for contact-impact problems using edge-based smooth triangular element and GPU. Comput. Phys. Commun. (2018). https://doi.org/10.1016/j.cpc.2017.12.006

    Article  Google Scholar 

  6. Sydenstricker, R.M., Landau, L.: Study of some triangular discrete Reissner–Mindlin plate and shell elements. Comput. Struct. (2000). https://doi.org/10.1016/S0045-7949(00)00102-4

    Article  Google Scholar 

  7. Batoz, J.L., Hammadi, F., Zheng, C., Zhong, W.: On the linear analysis of plates and shells using a new-16 degrees of freedom flat shell element. Comput. Struct. (2000). https://doi.org/10.1016/S0045-7949(00)00104-8

    Article  Google Scholar 

  8. Belytschko, T., Lin, J.I., Chen-Shyh, T.: Explicit algorithms for the nonlinear dynamics of shells. Comput. Methods Appl. Mech. Eng. (1984). https://doi.org/10.1016/0045-7825(84)90026-4

    Article  Google Scholar 

  9. Hale, J.S., Brunetti, M., Bordas, S.P.A., Maurini, C.: Simple and extensible plate and shell finite element models through automatic code generation tools. Comput. Struct. (2018). https://doi.org/10.1016/j.compstruc.2018.08.001

    Article  Google Scholar 

  10. Cui, X.Y., Wang, G., Li, G.Y.: A nodal integration axisymmetric thin shell model using linear interpolation. Appl. Math. Model. (2016). https://doi.org/10.1016/j.apm.2015.09.077

    Article  MathSciNet  Google Scholar 

  11. Cui, X.Y., Hu, X., Wang, G., Li, G.Y.: An accurate and efficient scheme for acoustic-structure interaction problems based on unstructured mesh. Comput. Methods Appl. Mech. Eng. (2017). https://doi.org/10.1016/j.cma.2017.01.022

    Article  MathSciNet  Google Scholar 

  12. Schwarze, M., Vladimirov, I.N., Reese, S.: Sheet metal forming and springback simulation by means of a new reduced integration solid-shell finite element technology. Comput. Methods Appl. Mech. Eng. (2011). https://doi.org/10.1016/j.cma.2010.07.020

    Article  MATH  Google Scholar 

  13. Thai-Hoang, C., Nguyen-Thanh, N., Nguyen-Xuan, H., Rabczuk, T., Bordas, S.: A cell—based smoothed finite element method for free vibration and buckling analysis of shells. KSCE J. Civ. Eng. (2011). https://doi.org/10.1007/s12205-011-1092-1

    Article  Google Scholar 

  14. Nguyen-Xuan, H., Rabczuk, T., Bordas, S., Debongnie, J.F.: A smoothed finite element method for plate analysis. Comput. Methods Appl. Mech. Eng. (2008). https://doi.org/10.1016/j.cma.2007.10.008

    Article  MATH  Google Scholar 

  15. Chai, Y., Li, W., Liu, G., Gong, Z., Li, T.: A superconvergent alpha finite element method (S\(\alpha \)FEM) for static and free vibration analysis of shell structures. Comput. Struct. (2017). https://doi.org/10.1016/j.compstruc.2016.10.021

    Article  Google Scholar 

  16. Feng, H., Cui, X.Y., Li, G.Y.: A stable nodal integration method with strain gradient for static and dynamic analysis of solid mechanics. Eng. Anal. Bound. Elem. (2016). https://doi.org/10.1016/j.enganabound.2015.10.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, G., Cui, X.Y., Li, G.Y.: Temporal stabilization nodal integration method for static and dynamic analyses of Reissner–Mindlin plates. Comput. Struct. (2015). https://doi.org/10.1016/j.compstruc.2015.02.007

    Article  Google Scholar 

  18. Cui, X., Li, S., Feng, H., Li, G.: A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process. J. Comput. Phys. (2017). https://doi.org/10.1016/j.jcp.2017.02.014

    Article  MathSciNet  Google Scholar 

  19. Liu, P.W., Ji, Y.Z., Wang, Z., Qiu, C.L., Antonysamy, A.A., Chen, L.Q., Cui, X.Y., Chen, L.: Investigation on evolution mechanisms of site-specific grain structures during metal additive manufacturing. J. Mater. Process. Technol. (2018). https://doi.org/10.1016/j.jmatprotec.2018.02.042

    Article  Google Scholar 

  20. Feng, S.Z., Bordas, S.P.A., Han, X., Wang, G., Li, Z.X.: A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics. Acta Mech. 230, 2385–2398 (2019). https://doi.org/10.1007/s00707-019-02386-y

    Article  MathSciNet  Google Scholar 

  21. Liu, P., Cui, X., Wang, G., Wang, Z., Chen, L.: An accurate and efficient scheme for linear and nonlinear analyses based on a gradient-weighted technique. Int. J. Non Linear Mech. 105, 9–19 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.07.011

    Article  Google Scholar 

  22. Chen, J., Wu, C., Yoon, S.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Meth. Eng. 0207, 435–466 (2001). https://doi.org/10.1002/1097-0207(20010120)50

  23. Liu, G.R., Dai, K.Y., Nguyen, T.T.: A smoothed finite element method for mechanics problems. Comput. Mech. (2007). https://doi.org/10.1007/s00466-006-0075-4

    Article  MATH  Google Scholar 

  24. Zeng, W., Liu, G.R.: Smoothed finite element methods (S-FEM): an overview and recent developments. Arch. Comput. Methods Eng. (2018). https://doi.org/10.1007/s11831-016-9202-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Chai, Y., You, X., Li, W., Huang, Y., Yue, Z., Wang, M.: Application of the edge-based gradient smoothing technique to acoustic radiation and acoustic scattering from rigid and elastic structures in two dimensions. Comput. Struct. (2018). https://doi.org/10.1016/j.compstruc.2018.05.009

    Article  Google Scholar 

  26. Zeng, W., Liu, G.R., Kitamura, Y., Nguyen-Xuan, H.: A three-dimensional ES-FEM for fracture mechanics problems in elastic solids. Eng. Fract. Mech. (2013). https://doi.org/10.1016/j.engfracmech.2013.10.017

    Article  Google Scholar 

  27. Zeng, W., Larsen, J.M., Liu, G.R.: Smoothing technique based crystal plasticity finite element modeling of crystalline materials. Int. J. Plast. (2014). https://doi.org/10.1016/j.ijplas.2014.09.007

    Article  Google Scholar 

  28. Wu, F., Zeng, W., Yao, L.Y., Liu, G.R.: A generalized probabilistic edge-based smoothed finite element method for elastostatic analysis of Reissner–Mindlin plates. Appl. Math. Model. (2018). https://doi.org/10.1016/j.apm.2017.09.005

    Article  MathSciNet  Google Scholar 

  29. Li, S., Cui, X., Feng, H., Wang, G.: An electromagnetic forming analysis modelling using nodal integration axisymmetric thin shell. J. Mater. Process. Technol. (2017). https://doi.org/10.1016/j.jmatprotec.2017.01.028

    Article  Google Scholar 

  30. Wang, G., Cui, X.Y., Feng, H., Li, G.Y.: A stable node-based smoothed finite element method for acoustic problems. Comput. Methods Appl. Mech. Eng. (2015). https://doi.org/10.1016/j.cma.2015.09.005

    Article  MathSciNet  MATH  Google Scholar 

  31. Nguyen-Xuan, H., Rabczuk, T., Nguyen-Thanh, N., Nguyen-Thoi, T., Bordas, S.: A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput. Mech. (2010). https://doi.org/10.1007/s00466-010-0509-x

    Article  MathSciNet  MATH  Google Scholar 

  32. Feng, H., Cui, X., Li, G.: A stable nodal integration method for static and quasi-static electromagnetic field computation. J. Comput. Phys. (2017). https://doi.org/10.1016/j.jcp.2017.02.022

    Article  MathSciNet  MATH  Google Scholar 

  33. Nguyen-Thanh, N., Nguyen-Xuan, H., Bordas, S.P.A., Rabczuk, T.: Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput. Methods Appl. Mech. Eng. (2011). https://doi.org/10.1016/j.cma.2011.01.018

    Article  MathSciNet  MATH  Google Scholar 

  34. Nguyen-Xuan, H., Tran, L.V., Thai, C.H., Kulasegaram, S., Bordas, S.P.A.: Isogeometric analysis of functionally graded plates using a refined plate theory. Compos. Part B Eng. (2014). https://doi.org/10.1016/j.compositesb.2014.04.001

    Article  Google Scholar 

  35. Dornisch, W., Müller, R., Klinkel, S.: An efficient and robust rotational formulation for isogeometric Reissner–Mindlin shell elements. Comput. Methods Appl. Mech. Eng. (2016). https://doi.org/10.1016/j.cma.2016.01.018

    Article  MathSciNet  MATH  Google Scholar 

  36. Sobota, P.M., Dornisch, W., Müller, R., Klinkel, S.: Implicit dynamic analysis using an isogeometric Reissner–Mindlin shell formulation. Int. J. Numer. Methods Eng. (2017). https://doi.org/10.1002/nme.5429

    Article  MathSciNet  Google Scholar 

  37. Li, W., Gong, Z.X., Chai, Y.B., Cheng, C., Li, T.Y., Zhang, Q.F., Wang, M.S.: Hybrid gradient smoothing technique with discrete shear gap method for shell structures. Comput. Math. Appl. (2017). https://doi.org/10.1016/j.camwa.2017.06.047

    Article  MathSciNet  MATH  Google Scholar 

  38. Dornisch, W., Müller, R., Klinkel, S.: An efficient and robust rotational formulation for isogeometric Reissner–Mindlin shell elements. Comput. Methods Appl. Mech. Eng. (2016). https://doi.org/10.1016/j.cma.2016.01.018

    Article  MathSciNet  MATH  Google Scholar 

  39. Choo, Y.S., Choi, N., Lee, B.C.: A new hybrid-Trefftz triangular and quadrilateral plate element. Appl. Math. Model. (2010). https://doi.org/10.1016/j.apm.2009.03.022

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, Q., Soric, J., Jarak, T., Atluri, S.N.: A locking-free meshless local Petrov–Galerkin formulation for thick and thin plates. J. Comput. Phys. (2005). https://doi.org/10.1016/j.jcp.2005.02.008

    Article  MATH  Google Scholar 

  41. Flores, F.G.: A “Prism” solid element for large strain shell analysis. Comput. Methods Appl. Mech. Eng. (2013). https://doi.org/10.1016/j.cma.2012.10.001

    Article  MathSciNet  MATH  Google Scholar 

  42. Flores, F.G.: A simple reduced integration hexahedral solid-shell element for large strains. Comput. Methods Appl. Mech. Eng. (2016). https://doi.org/10.1016/j.cma.2016.01.013

    Article  MathSciNet  MATH  Google Scholar 

  43. Bathe, K.J., Iosilevich, A., Chapelle, D.: Evaluation of the MITC shell elements. Comput. Struct. (2000). https://doi.org/10.1016/S0045-7949(99)00214-X

    Article  Google Scholar 

  44. Flores, F.G.: Development of a non-linear triangular prism solid-shell element using ANS and EAS techniques. Comput. Methods Appl. Mech. Eng. (2013). https://doi.org/10.1016/j.cma.2013.07.014

    Article  MathSciNet  MATH  Google Scholar 

  45. Sze, K.Y., Zhu, D.: A quadratic assumed natural strain curved triangular shell element. Comput. Methods Appl. Mech. Eng. (1999). https://doi.org/10.1016/S0045-7825(98)00277-1

    Article  MATH  Google Scholar 

  46. De César Sá, J.M.A., Natal Jorge, R.M., Fontes Valente, R.A., Almeida Areias, P.M.: Development of shear locking-free shell elements using an enhanced assumed strain formulation. Int. J. Numer. Methods Eng. (2002). https://doi.org/10.1002/nme.360

    Article  MATH  Google Scholar 

  47. Büchter, N., Ramm, E., Roehl, D.: Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int. J. Numer. Methods Eng. (1994). https://doi.org/10.1002/nme.1620371504

    Article  MATH  Google Scholar 

  48. Bathe, K.-J., Dvorkin, E.N.: A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int. J. Numer. Methods Eng. (1986). https://doi.org/10.1002/nme.1620220312

    Article  MATH  Google Scholar 

  49. Ko, Y., Lee, P.S., Bathe, K.J.: A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element. Comput. Struct. (2017). https://doi.org/10.1016/j.compstruc.2017.07.003

    Article  Google Scholar 

  50. Chapelle, D., Suarez, I.P.: Detailed reliability assessment of triangular MITC elements for thin shells. Comput. Struct. (2008). https://doi.org/10.1016/j.compstruc.2008.06.001

    Article  Google Scholar 

  51. Lee, P.S., Bathe, K.J.: Development of MITC isotropic triangular shell finite elements. Comput. Struct. (2004). https://doi.org/10.1016/j.compstruc.2004.02.004

    Article  Google Scholar 

  52. Bletzinger, K.U., Bischoff, M., Ramm, E.: Unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput. Struct. (2000). https://doi.org/10.1016/S0045-7949(99)00140-6

    Article  Google Scholar 

  53. Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., Bordas, S.: An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic Mindlin–Reissner plates. Finite Elem. Anal. Des. (2011). https://doi.org/10.1016/j.finel.2011.01.004

    Article  MATH  Google Scholar 

  54. Nguyen-Xuan, H., Liu, G.R., Thai-Hoang, C., Nguyen-Thoi, T.: An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput. Methods Appl. Mech. Eng. (2009). https://doi.org/10.1016/j.cma.2009.09.001

    Article  MATH  Google Scholar 

  55. Phung-Van, P., Nguyen-Thoi, T., Le-Dinh, T., Nguyen-Xuan, H.: Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3). Smart Mater. Struct. (2013). https://doi.org/10.1088/0964-1726/22/9/095026

    Article  Google Scholar 

  56. Natarajan, S., Ferreira, A.J.M., Bordas, S., Carrera, E., Cinefra, M., Zenkour, A.M.: Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method. Math. Probl. Eng. (2014). https://doi.org/10.1155/2014/247932

    Article  MathSciNet  MATH  Google Scholar 

  57. Cui, X.Y., Tian, L.: A central point-based discrete shear gap method for plates and shells analysis using triangular elements. Int. J. Appl. Mech. (2017). https://doi.org/10.1142/S1758825117500557

    Article  Google Scholar 

  58. Simo, J.C., Taylor, R.L.: A return mapping algorithm for plane stress elastoplasticity. Int. J. Numer. Methods Eng. (1986). https://doi.org/10.1002/nme.1620220310

    Article  MathSciNet  MATH  Google Scholar 

  59. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity, vol. 7. Springer (2006). https://doi.org/10.1007/B98904

  60. Morino, L., Leech, J.W., Witmer, E.A.: An improved numerical calculation technique for large elastic-plastic transient deformations of thin shells: part 2—evaluation and applications. J. Appl. Mech. (2010). https://doi.org/10.1115/1.3408793

    Article  MATH  Google Scholar 

  61. Makinouchi, A., Nakamachi, E., Oñate, E., Wagoner, R.: In: Proceedings of the International Conference NUMISHEET’93 (1993)

  62. Flores, F.G., Oñate, E.: A basic thin shell triangle with only translational DOFs for large strain plasticity. Int. J. Numer. Methods Eng. (2001). https://doi.org/10.1002/nme.147

    Article  MATH  Google Scholar 

  63. Lee, S.W., Yoon, J.W., Yang, D.Y.: Comparative investigation into the dynamic explicit and the static implicit method for springback of sheet metal stamping. Eng. Comput. (Swansea, Wales) 1, 2 (1999). https://doi.org/10.1108/02644409910266494

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The support of National Key R & D Program of China (2017YFB1002704), National Science Foundation of China (11872177), Hunan Provincial Innovation Foundation for Postgraduate of China (CX2018B202), and the China Scholarship Council (201806130094) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, J. & Cui, X. Nonlinear dynamic analysis of shell structures by the formulation based on a discrete shear gap. Acta Mech 230, 3571–3591 (2019). https://doi.org/10.1007/s00707-019-02475-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02475-y

Navigation