Skip to main content
Log in

Energy and volume changes due to the formation of a circular inhomogeneity in a residual deviatoric stress field

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An inclusion of purely dilatational eigenstrain in an infinitely extended isotropic elastic matrix, independently of its shape, causes a deviatoric stress field around it. The present paper analyses the energy and volume changes due to the formation of a circular inhomogeneity in a deviatoric stress field coming from a circular inclusion of dilatational eigenstrain. It is found that the elastic stress inside the inhomogeneity remains deviatoric and the inhomogeneity formation does not change the volume of the inclusion-matrix system; it is argued that the same occurs for any inclusion shape and non-uniform eigenstrain. The elastic energy changes occurring in the domains occupied by matrix, inhomogeneity, and inclusion are calculated, and its dependence on the elastic properties and geometrical parameters of inhomogeneity and matrix is numerically investigated. Strengthening effects of the matrix-inhomogeneity system are examined by means of the energy force and expanding moment acting on the inhomogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bitter, F.: On impurities in metals. Phys. Rev. 37, 1527 (1931)

    Article  Google Scholar 

  2. Goodier, J.N.: On the integration of thermo-elastic equations. Philos. Mag. 23, 1017–1032 (1937)

    Article  Google Scholar 

  3. Robinson, K.: Elastic energy of ellipsoidal inclusion in an infinite solid. J. Appl. Phys. 22, 1045–1054 (1951)

    Article  MathSciNet  Google Scholar 

  4. Nabarro, F.R.: Inclusion and inhomogeneities under stress. Philos. Mag. Lett. 73, 45–50 (1996)

    Article  Google Scholar 

  5. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. (trans. JRM Radok) Noordhoff (1953)

  6. Kattis, M.A., Meguid, S.A.: Two-phase potentials for the treatment of an elastic inclusion in plane thermoelasticity. J. Appl. Mech. 62, 7–12 (1995)

    Article  MathSciNet  Google Scholar 

  7. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. Sect. A 65, 349–354 (1952)

    Article  Google Scholar 

  8. Bilby, B.A.: On the interactions of dislocations and solute atoms. Proc. Phys. Soc. A 63, 191 (1950)

    Article  Google Scholar 

  9. Dundurs, J., Mura, T.: Interaction between an edge dislocation and a circular inclusion. J. Mech. Phys. Solids 12, 177–189 (1964)

    Article  MathSciNet  Google Scholar 

  10. Smith, E.: The interaction between dislocations and inhomogeneity-I. Int. J. Eng. Sci. 6, 129–143 (1968)

    Article  Google Scholar 

  11. Hutchinson, J.W.: On Steady Quasi-Static Crack Growth. Harvard University Rep. Division of Applied Sciences (1974). DEAP S-8

  12. Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. R. Soc. A 244, 87–112 (1951)

    Article  MathSciNet  Google Scholar 

  13. Eshelby, J.D.: Energy relations and energy momentum tensor in continuum mechanics. In: Kanninen, M.F., Alder, M.F., Rosenfield, A.R., Jaffe, R.I. (eds.) Inelastic Behavior of Solids. McGraw-Hill, New York (1970)

    Google Scholar 

  14. Guell, D.L., Dundurs, J.: Further results on center of dilatation and residual stresses in joined elastic half-spaces. Developments in Theoretical and Applied Mechanics, Proceeding of the Third Southeastern Conference on Theoretical and Applied Mechanics, pp. 105–115 (1967)

  15. Barnett, D.M.: On nucleation of coherent precipitates near edge dislocations. Scr. Metall. 5, 261–266 (1971)

    Article  Google Scholar 

  16. Barnett, D.M., Lee, J.K., Aaronson, H.I., Russell, K.C.: The strain energy of a coherent ellipsoidal precipitate. Scr. Metall. 8, 1447–1450 (1974)

    Article  Google Scholar 

  17. Yu, H.Y., Sanday, S.C.: Elastic fields in joined half-spaces due to nuclei of strain. Proc. R. Soc. Lond. A 434, 503–519 (1991)

    Article  MathSciNet  Google Scholar 

  18. Onaka, S., Fujii, T., Kato, M.: The elastic strain energy of a coherent inclusion with deviatoric misfit strains. Mech. Mater. 20, 329–336 (1995)

    Article  Google Scholar 

  19. Onaka, S.: Elastic strain energy due to deviatoric eigenstrains in an inclusion having symmetric shape. Philos. Mag. Lett. 85, 115–123 (2005)

    Article  Google Scholar 

  20. Seo, Y., Jung, G.-J., Kim, I.H., Pak, Y.E.: Configurational forces on elastic line singularities. J. Appl. Mech. 85, 034501 (2017)

    Article  Google Scholar 

  21. Lubarda, V.A.: Interaction between a circular inclusion and a circular void under plain strain conditions. J. Mech. Mater. Struct. 10, 317–330 (2015)

    Article  MathSciNet  Google Scholar 

  22. Lubarda, V.A.: Circular inclusion near a circular void: determination of elastic antiplane shear fields and configurational forces. Acta Mech. 226, 643–664 (2015)

    Article  MathSciNet  Google Scholar 

  23. Kattis, M.A., Karalis, N.T.: Elastic energies in circular inhomogeneities: imperfect versus perfect interfaces. J. Elast. 111, 131–151 (2013)

    Article  MathSciNet  Google Scholar 

  24. Dundurs, J., Markenscoff, X.: Invariance of stresses under a change in elastic compliances. Proc. R. Soc. Lond. A 443, 289–300 (1993)

    Article  Google Scholar 

  25. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. A 241, 376–396 (1957)

    Article  MathSciNet  Google Scholar 

  26. Milne-Thomson, L.M.: Theoretical Hydrodynamics. MacMillan, New York (1968)

    Book  Google Scholar 

  27. Dundurs, J.: Some properties of elastic stresses in a composite. In: Proceedings of the 6th Annual Meeting of the Society of Engineering Science, vol. 5, pp. 203–216 (1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinos A. Kattis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Basic relationships

Muskelishvili’s relationships are [5]:

$$\begin{aligned} \sigma _{rr}^k +\sigma _{\theta \theta }^k= & {} 2[{\varphi }'_k (z)+\overline{{\varphi }'_k (z)} ], \end{aligned}$$
(A.1)
$$\begin{aligned} \sigma _{rr}^k -i\sigma _{r\theta }^k= & {} {\varphi }'_k (z)+\overline{{\varphi }'_k (z)} -[\bar{{z}}{\varphi }''_k (z)+{\psi }'_k (z)]e^{2i\theta },\end{aligned}$$
(A.2)
$$\begin{aligned} 2\mu _k (u_r^k +iu_\theta ^k )e^{i\theta }= & {} \kappa \varphi _k (z)-z\overline{{\varphi }'_k (z)} +\overline{\psi _k (z)} . \end{aligned}$$
(A.3)

The complex potentials of the inhomogeneity and matrix in terms of their two-phase potentials \(\varphi _0 (z)\), \(\psi _0 (z)\) [23] are:

$$\begin{aligned} \varphi _I (z)= & {} (1+\Lambda )\varphi _0 (z), \end{aligned}$$
(A.4)
$$\begin{aligned} \psi _I (z)= & {} (1+\Pi )\psi _0 (z), \end{aligned}$$
(A.5)

and

$$\begin{aligned} \varphi _M (z)= & {} \varphi _0 (z)-\Omega z\bar{{{\varphi }'}}_0 \left( {\frac{R_I^{2}}{z}} \right) +\Pi \bar{{\psi }}_0 \left( {\frac{R_I^{2}}{z}} \right) , \end{aligned}$$
(A.6)
$$\begin{aligned} \psi _M (z)= & {} \psi _0 (z)+\Lambda \bar{{\varphi }}_0 \left( {\frac{R_I^{2}}{z}} \right) +(\Lambda +\Omega )\frac{R_I^{2}}{z}{\varphi }'_0 (z) \nonumber \\&+\,\frac{R_I^{2}}{z}\frac{\hbox {d}}{\hbox {d}z}\left[ {\Omega z\bar{{{\varphi }'}}_0 \left( {\frac{R_I^{2}}{z}} \right) -\Pi \bar{{\psi }}_0 \left( {\frac{R_I^{2}}{z}} \right) } \right] \end{aligned}$$
(A.7)

where

$$\begin{aligned} \Lambda =\frac{\mu _I \kappa _M -\mu _M \kappa _I }{\mu _I +\mu _M \kappa _I },\quad \Pi =\frac{\mu _I -\mu _M }{\mu _M +\mu _I \kappa _M },\quad \Omega =-\frac{\mu _I -\mu _M }{\mu _I +\mu _M \kappa _I } \end{aligned}$$
(A.8)

are two-phase parameters alternative of those of Dundurs [27].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kattis, M.A., Gkouti, E. & Papanikos, P. Energy and volume changes due to the formation of a circular inhomogeneity in a residual deviatoric stress field. Acta Mech 230, 3457–3475 (2019). https://doi.org/10.1007/s00707-019-02469-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02469-w

Navigation