Skip to main content
Log in

A phenomenological model for nonlinear hysteresis and creep behaviour of ferroelectric materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, a thermodynamically consistent constitutive relation is developed for ferroelectric materials. The present model is developed in such a way that an intermediate variable is introduced as a stored variable which accounts for calculating the internal variable. Due to this approach, simulations can be performed without an iterative procedure. Thus, this model improves the computational efficiency. The algorithmic procedure can also handle the evolution of ferroelastic strain as well as the evolution of polarisation simultaneously, without getting into convergence issues. In this work, simulations have been performed to capture various behaviours such as ferroelectric hysteresis with prestress, mechanical depolarisation, ferroelastic hysteresis, and creep behaviour. The simulated results have been compared with the experimental results, and it is observed that the model is good enough to capture various nonlinear hysteresis behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Syta, A., Bowen, C.R., Kim, H.A., Rysak, A., Litak, G.: Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates. Meccanica 50(8), 1961–1970 (2015)

    Article  Google Scholar 

  2. Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25–44 (2014)

    Article  Google Scholar 

  3. Smith, R.: Smart Material Systems. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Book  MATH  Google Scholar 

  4. Chen, W., Lynch, C.S.: A micro-electro-mechanical model for polarization switching of ferroelectric materials. Acta Mater. 46(15), 5303–5311 (1998)

    Article  Google Scholar 

  5. Hwang, S.C., Huber, J.E., McMeeking, R.M., Fleck, N.A.: The simulation of switching in polycrystalline ferroelectric ceramics. J. Appl. Phys. 84(3), 1530–1540 (1998)

    Article  Google Scholar 

  6. McMeeking, R.M., Hwang, S.C.: On the potential energy of a piezoelectric inclusion and the criterion for ferroelectric switching. Ferroelectrics 200(1), 151–173 (1997)

    Article  Google Scholar 

  7. Huber, J.E., Fleck, N.A., Landis, C.M., McMeeking, R.M.: A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids 47(8), 1663–1697 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Uetsuji, Y., Hata, T., Kuramae, H., Tsuchiya, K.: Homogenization modeling of domain switching in ferroelectric materials. Acta Mech. 225(10), 2969–2986 (2014)

    Article  Google Scholar 

  9. Li, W., Weng, G.J.: Micromechanics simulation of spontaneous polarization in ferroelectric crystals. J. Appl. Phys. 90, 2484–2491 (2001)

    Article  Google Scholar 

  10. Pane, I., Fleck, N.A., Chu, D.P., Huber, J.E.: The influence of mechanical constraint upon the switching of a ferroelectric memory capacitor. Eur. J. Mech. A Solids 28(2), 195–201 (2009)

    Article  MATH  Google Scholar 

  11. Arockiarajan, A., Menzel, A., Delibas, B., Seemann, W.: Computational modeling of rate-dependent domain switching in piezoelectric materials. Eur. J. Mech. A Solids 25, 950–964 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huber, J.E., Fleck, N.A.: Ferroelectric switching: a micromechanics model versus measured behaviour. Eur. J. Mech. A Solids 23(2), 203–217 (2004)

    Article  MATH  Google Scholar 

  13. Devonshire, A.F.: Xcvi. Theory of barium titanate: part I. Lond. Edinb. Dublin Philos. Mag. J. Sci. 40(309), 1040–1063 (1949)

    Article  Google Scholar 

  14. Chen, P.J., Peercy, P.S.: One dimensional dynamic electromechanical constitutive relations of ferroelectric materials. Acta Mech. 31(3), 231–241 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, P.J., Madsen, M.M.: One dimensional polar responses of the electrooptic ceramic plzt 7/65/35 due to domain switching. Acta Mech. 41(3), 255–264 (1981)

    Article  Google Scholar 

  16. Bassiouny, E., Ghaleb, A.F., Maugin, G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects-I. Basic equations. Int. J. Eng. Sci. 26(12), 1279–1295 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bassiouny, E., Ghaleb, A.F., Maugin, G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects-II. Poling of ceramics. Int. J. Eng. Sci. 26(12), 1297–1306 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bassiouny, E., Maugin, G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects-III. Parameter identification. Int. J. Eng. Sci. 27(8), 975–987 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bassiouny, E., Maugin, G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects-IV. Combined electromechanical loading. Int. J. Eng. Sci. 27(8), 989–1000 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, F., Li, H.J., Wang, T.C.: Energy principle and nonlinear electric–mechanical behavior of ferroelectric ceramics. Acta Mech. 198(3), 147–170 (2008)

    Article  MATH  Google Scholar 

  21. Su, Y., Liu, N., Weng, G.J.: A phase field study of frequency dependence and grain-size effects in nanocrystalline ferroelectric polycrystals. Acta Mater. 87, 293–308 (2015)

    Article  Google Scholar 

  22. Liu, N., Su, Y.: A comparative study of the phase-field approach in modeling the frequency-dependent characteristics of ferroelectric materials. Acta Mech. 227(9), 2671–2682 (2016)

    Article  Google Scholar 

  23. Landis, C.M.: Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. J. Mech. Phys. Solids 50(1), 127–152 (2002)

    Article  MATH  Google Scholar 

  24. McMeeking, R.M., Landis, C.M.: A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics. Int. J. Eng. Sci. 40(14), 1553–1577 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kamlah, M., Tsakmakis, C.: Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics. Int. J. Solids Struct. 36(5), 669–695 (1999)

    Article  MATH  Google Scholar 

  26. Kamlah, M., Böhle, U.: Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int. J. Solids Struct. 38(4), 605–633 (2001)

    Article  MATH  Google Scholar 

  27. Gaudenzi, P., Bathe, K.J.: An iterative finite element procedure for the analysis of piezoelectric continua. J. Intell. Mater. Syst. Struct. 6(2), 266–273 (1995)

    Article  Google Scholar 

  28. Klinkel, S.: A phenomenological constitutive model for ferroelastic and ferroelectric hysteresis effects in ferroelectric ceramics. Int. J. Solids Struct. 43(22), 7197–7222 (2006)

    Article  MATH  Google Scholar 

  29. Miehe, C., Rosato, D.: A rate-dependent incremental variational formulation of ferroelectricity. Int. J. Eng. Sci. 49(6), 466–496 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Maniprakash, S., Jayendiran, R., Menzel, A., Arockiarajan, A.: Experimental investigation, modelling and simulation of rate-dependent response of 1–3 ferroelectric composites. Mech. Mater. 94, 91–105 (2016)

    Article  Google Scholar 

  31. Maniprakash, S., Arockiarajan, A., Menzel, A.: A multi-surface model for ferroelectric ceramics—application to cyclic electric loading with changing maximum amplitude. Philos. Mag. 96(13), 1263–1284 (2016)

    Article  Google Scholar 

  32. Maniprakash, S.: Phenomenological modelling and simulation of ferroelectric ceramics. Ph.D. thesis, dissertation, Dortmund, Technische Universität, 2016 (2015)

  33. Subhani, S. M., Maniprakash, S., Arockiarajan, A.: Nonlinear magneto-electro-mechanical response of layered magneto-electric composites: theoretical and experimental approach. Acta Mech. 1–17 (2017)

  34. Croft, D., Shedd, G., Devasia, S.: Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. In: Proceedings of the American Control Conference, 2000, vol. 3. IEEE, pp. 2123–2128 (2000)

  35. Guyomar, D., Ducharne, B., Sebald, G.: Time fractional derivatives for voltage creep in ferroelectric materials: theory and experiment. J. Phys. D Appl. Phys. 41(12), 125410 (2008)

    Article  Google Scholar 

  36. Wolf, F., Sutor, A., Rupitsch, S.J., Lerch, R.: Modeling and measurement of creep-and rate-dependent hysteresis in ferroelectric actuators. Sens. Actuators A 172(1), 245–252 (2011)

    Article  Google Scholar 

  37. Mokaberi, B., Requicha, A.A.G.: Compensation of scanner creep and hysteresis for afm nanomanipulation. IEEE Trans. Autom. Sci. Eng. 5(2), 197–206 (2008)

    Article  Google Scholar 

  38. Liu, Q.D., Huber, J.E.: Creep in ferroelectrics due to unipolar electrical loading. J. Eur. Ceram. Soc. 26(13), 2799–2806 (2006)

    Article  Google Scholar 

  39. Kim, S.J.: Normally distributed free energy model and creep behavior of ferroelectric polycrystals at room and high temperatures. Acta Mech. 223(10), 2091–2105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kamlah, M.: Ferroelectric and ferroelastic piezoceramics—modeling of electromechanical hysteresis phenomena. Contin. Mech. Thermodyn. 13(4), 219–268 (2001)

    Article  MATH  Google Scholar 

  41. Schröder, J., Romanowski, H.: A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting. Arch. Appl. Mech. 74, 863–877 (2005)

    Article  MATH  Google Scholar 

  42. Zhou, D.: Experimental Investigation of Non-linear Constitutive Behavior of PZT Piezoceramics. FZKA, Bunia (2003)

    Google Scholar 

  43. Zhou, D., Kamlah, M., Munz, D.: Rate dependence of soft PZT ceramics under electric field loading. In: Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics, vol. 4333. International Society for Optics and Photonics, pp. 64–71 (2001)

  44. Zhou, D., Kamlah, M.: Room-temperature creep of soft PZT under static electrical and compressive stress loading. Acta Mater. 54(5), 1389–1396 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support by the Naval Research Board—NRB-379/MAT/16-17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Maniprakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laxman, L.V., Maniprakash, S. & Arockiarajan, A. A phenomenological model for nonlinear hysteresis and creep behaviour of ferroelectric materials. Acta Mech 229, 3853–3867 (2018). https://doi.org/10.1007/s00707-018-2191-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2191-6

Navigation