Acta Mechanica

, Volume 229, Issue 6, pp 2647–2655 | Cite as

A design of elastic metamaterials with multi-negative pass bands

  • Sheng Sang
  • Ziping Wang
Original Paper


In this paper, an elastic metamaterial is proposed by integrating a two-dimensionally periodic honeycomb lattice and tetrachiral metamaterial inclusions for low-frequency wave applications. Plane wave propagation in infinite periodic cells is investigated through using Floquet–Bloch principles and the finite element method. Two separate negative pass bands induced by different mechanisms appear in the band structures of wave propagation in the proposed elastic metamaterial. The working mechanisms of those two negative pass bands are revealed though analyzing the eigenmodes of the unit cell and the dynamic effective material properties. Numerical examples validate the proposed model and show that negative refraction of elastic waves in the elastic metamaterial has been obtained. The design concept of this type of elastic may be of use for the design of broadband flat lenses for elastic wave focusing.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work carried out in this report is partially funded and supported by National Natural Science Foundation of China (Grants No. 11402101).


  1. 1.
    Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Sov. Phys. Uspekhi 10, 509–514 (1968)CrossRefGoogle Scholar
  2. 2.
    Shelby, R.A., Smith, D.R., Shultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)CrossRefGoogle Scholar
  3. 3.
    Pendry, J.B.: A chiral route to negative refraction. Science 19, 1353–1355 (2004)CrossRefGoogle Scholar
  4. 4.
    Luo, C., Johnson, S.G., Joannopoulos, J.D., Pendry, J.B.: All-angle negative refraction without negative effective index. Phys. Rev. B 65, 201104 (2002)CrossRefGoogle Scholar
  5. 5.
    Yao, J., Liu, Z., Liu, Y., Wang, Y., Sun, C., Bartal, G., Stacy, A.M., Zhang, X.: Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930 (2008)CrossRefGoogle Scholar
  6. 6.
    Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C.M.: Electromagnetic waves: negative refraction by photonic crystals. Nature 423, 604–605 (2003)CrossRefGoogle Scholar
  7. 7.
    Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)CrossRefGoogle Scholar
  8. 8.
    Padilla, W.J., Smith, D.R., Basov, D.N.: Spectroscopy of metamaterials from infrared to optical frequencies. J. Opt. Soc. Am. B 23, 404–414 (2006)CrossRefGoogle Scholar
  9. 9.
    Ding, Y., Liu, Z., Qiu, C., Shi, J.: Metamaterial with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99, 093904 (2007)CrossRefGoogle Scholar
  10. 10.
    Lai, Y., Wu, Y., Sheng, P., Zhang, Z.Q.: Hybrid elastic solids. Nat. Mater. 10, 620–624 (2011)CrossRefGoogle Scholar
  11. 11.
    Wu, Y., Lai, Y., Zhang, Z.Q.: Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011)CrossRefGoogle Scholar
  12. 12.
    Liu, X.N., Hu, G.K., Huang, G.L., Sun, C.T.: An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 98, 251907 (2011)CrossRefGoogle Scholar
  13. 13.
    Pope, S.: Double negative elastic metamaterial design through electrical-mechanical circuit analogies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1467–1474 (2013)CrossRefGoogle Scholar
  14. 14.
    Wang, X.: Dynamic behavior of a metamaterial system with negative mass and modulus. Int. J. Solids Struct. 51, 1534–1541 (2014)CrossRefGoogle Scholar
  15. 15.
    Li, Z., Wang, X.: On the dynamic behavior of a two dimensional elastic metamaterial system. Int. J. Solids Struct. 78–79, 174–181 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: NR of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat. Commun. 5, 5510 (2014)CrossRefGoogle Scholar
  17. 17.
    Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119, 1995–2005 (2006)CrossRefGoogle Scholar
  18. 18.
    Åberg, M., Gudmundson, P.: The usage of standard finite element codes for computation of dispersion relations in materials with periodic microstructure. J. Acoust. Soc. Am. 102, 2007–2013 (1997)CrossRefGoogle Scholar
  19. 19.
    Liu, X.N., Hu, G.K., Huang, G.L., Sun, C.T.: Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. 330, 2536–2553 (2011)CrossRefGoogle Scholar
  20. 20.
    Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: A chiral EMM beam for broadband vibration suppression. J. Sound Vib. 333, 2759–2773 (2014)CrossRefGoogle Scholar
  21. 21.
    Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. ASME J. Vib. Acoust. 132, 031003 (2010)CrossRefGoogle Scholar
  22. 22.
    Pai, P.F.: Metamaterial-based broadband elastic wave absorber. J. Intell. Mater. Syst. Struct. 21, 517–528 (2010)CrossRefGoogle Scholar
  23. 23.
    Sun, H.W., Du, X.W., Pai, P.F.: Theory of metamaterial beams for broadband vibration absorption. J. Intell. Mater. Syst. Struct. 21, 1085–1101 (2010)CrossRefGoogle Scholar
  24. 24.
    Xiao, Y., Wen, J., Wen, X.: Broadband locally resonant beams containing multiple periodic arrays of attached resonators. Phys. Lett. A 376, 1384–1390 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of System EngineeringUniversity of Arkansas at Little RockLittle RockUSA
  2. 2.Faculty of Civil Engineering and MechanicsJiangsu UniversityZhenjiangChina

Personalised recommendations