Skip to main content
Log in

Modulating lamb wave band gaps using an elastic metamaterial plate

  • Physical Fundamentals of Engineering Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Modulating band gaps (extending the bandwidths or shifting into a lower frequency range) is a challenging task in phononic crystals. In this paper, elastic metamaterial plates composed of a square array of “hard” stubs or “soft” stubs on both sides of a 2D binary locally resonant plate are proposed, and their band structures are studied. The dispersion relationships and the displacement fields of the eigenmodes are calculated using finite element methods. Numerical results show that the band gaps are shifted to lower frequencies and the bandwidths are enlarged compared to classic elastic metamaterial plates. A conceptual “analogousrigid mode” that includes an “out-of-plane analogous-rigid mode” and an “in-plane analogous-rigid mode” is developed to explain these phenomena. The “out-of-plane analogous-rigid mode” mainly adjusts the band gaps into the lower frequency range, and the “in-plane analogous-rigid mode” mainly enlarges the bandwidth. Furthermore, the band gap effects of composite “hard” stubs and “soft” stubs are investigated. The results show that the location of the band gaps can be modulated into a relatively lower frequency and the bandwidth can be extended by the use of different composite stubs. These elastic wave properties in the proposed structure can be used to optimize band gaps and possibly produce low-frequency filters and waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sigalas and E. N. Economou, Solid State Commun. 86 (3), 141 (1993).

    Article  ADS  Google Scholar 

  2. Y. Tanaka and S. I. Tamura, Phys. Rev. B. 58, 7958 (1998).

    Article  ADS  Google Scholar 

  3. J. H. Ma, Z. L. Hou, and B. M. Assouar, J. Appl. Phys. 115, 093508 (2014).

    Article  ADS  Google Scholar 

  4. A. S. Shamaev and V. V. Shumilova, Acoust. Phys, 61, 8 (2015).

    Article  ADS  Google Scholar 

  5. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).

    Article  ADS  Google Scholar 

  6. T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, Phys. Rev. Lett. 94, 115501 (2005).

    Article  ADS  Google Scholar 

  7. J. J. Chen, K. W. Zhang, J. Gao, and J. C. Cheng, Phys. Rev. B 73, 094307 (2006).

    Article  ADS  Google Scholar 

  8. T. C. Wu, T. T. Wu, and J. C. Hsu, Phys. Rev. B 79, 104306 (2009).

    Article  ADS  Google Scholar 

  9. C. M. Reinke, M. F. Su, R. H. Olsson III, and I. El-Kady, Appl. Phys. Lett. 98, 061912 (2011).

    Article  ADS  Google Scholar 

  10. X. F. Zhu, Phys. Lett. A 377, 1784 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  11. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, Science 289, 1734 (2000).

    Article  ADS  Google Scholar 

  12. A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, Phys. Rev. E 74, 046610 (2006).

    Article  ADS  Google Scholar 

  13. J. H. Wen, D. L. Yu, G. Wang, H. G. Zhao, Y. Z. Liu, and X. S. Wen, Chin. Phys. Lett. 24, 1305 (2007).

    Article  ADS  Google Scholar 

  14. J. Chen, Y. Xia, X. Han, and H. Zhang, Ultrasonics 52, 920 (2012).

    Article  Google Scholar 

  15. J. J. Chen, X. Han, and G. Y. Li, J. Appl. Phys. 113, 184506 (2013).

    Article  ADS  Google Scholar 

  16. T. T. Wu, Z. G. Huang, T. C. Tsai, and T. C. Wu, Appl. Phys. Lett. 93, 111902 (2008).

    Article  ADS  Google Scholar 

  17. Y. Pennec, B. Djafari-Rouhani, H. Larabi, J. O. Vasseur, and A. C. Hladky-Hennion, Phys. Rev. B 78, 104105 (2008).

    Article  ADS  Google Scholar 

  18. M. Oudich, Y. Li, B. M. Assouar, and Z. Hou, New J. Phys. 12, 083049 (2010).

    Article  ADS  Google Scholar 

  19. K. Yu, T. Chen, and X. Wang, Physica B 416, 12 (2013).

    Article  ADS  Google Scholar 

  20. H. Zhang, J. Chen, and X. Han, J. Appl. Phys. 112, 054503 (2012).

    Article  ADS  Google Scholar 

  21. J. Hsu, J. Phys. D: Appl. Phys. 44, 055401 (2011).

    Article  ADS  Google Scholar 

  22. O. R. Bilal and M. I. Hussein, Appl. Phys. Lett. 103, 111901 (2013).

    Article  ADS  Google Scholar 

  23. M. B. Assouar and M. Oudich, Appl. Phys. Lett. 100, 123506 (2012).

    Article  ADS  Google Scholar 

  24. Y. Xiao, J. Wen, and X. Wen, J. Phys. D: Appl. Phys. 45, 195401 (2012).

    Article  ADS  Google Scholar 

  25. P. Wang, T. Chen, K. Yu, and X. Wang, J. Appl. Phys. 113, 053509 (2013).

    Article  ADS  Google Scholar 

  26. H. J. Zhao, H. W. Guo, B. Y. Li, Z. Q. Deng, and R. Q. Liu. J. Appl. Phys. 118, 044906 (2015).

    Article  ADS  Google Scholar 

  27. M. B. Assouar, J. Sun, F. Lin, and J. Hsu, Ultrasonics 54, 2159 (2014).

    Article  Google Scholar 

  28. A. Bergamini, T. Delpero, L. D. Simoni, L. D. Lillo, M. Ruzzene, and P. Ermanni, Adv. Mater. 26, 1343 (2014).

    Article  Google Scholar 

  29. A. D. Lapin, Acoust. Phys. 60, 245 (2014).

    Article  ADS  Google Scholar 

  30. S. K. Tleukenov and A. B. Aitbaev, Acoust. Phys. 6, 144 (2015).

    Article  ADS  Google Scholar 

  31. Y. Wang, F. M. Li, X. J. Jing, and Y. Z. Wang, Phys. Lett. A 379, 1532 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  32. C. C. Liu, X. J. Jing, and Z. B. Chen, Mech. Syst. Signal Pr. 68–69, 342 (2016).

    Article  Google Scholar 

  33. Y. G. Li, T. N. Chen, X. P. Wang, Y. H. Xi, and Q. X. Liang, Phys. Lett. A 379, 412 (2015).

    Article  Google Scholar 

  34. H. J. Zhao, H. W. Guo, B. Y. Li, Z. Q. Deng, and R. Q. Liu, J. Appl. Phys. 118, 044906 (2015).

    Article  ADS  Google Scholar 

  35. S. B. Li, T. N. Chen, X. P. Wang, Y. G. Li, and W. H. Chen, Phys. Lett. A 380, 2167 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Xi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xi, Y., Chen, T. et al. Modulating lamb wave band gaps using an elastic metamaterial plate. Acoust. Phys. 63, 508–516 (2017). https://doi.org/10.1134/S1063771017050116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017050116

Keywords

Navigation