Acta Mechanica

, Volume 229, Issue 4, pp 1579–1595 | Cite as

Periodic, quasi-periodic, and chaotic geometrically nonlinear forced vibrations of a shallow cantilever shell

Original Paper


Geometrically nonlinear forced vibrations of a cantilever shallow shell are analyzed. A finite degree of freedom nonlinear dynamical system is derived using the assumed mode method. The Neimark–Sacker bifurcations are detected close to the first principal resonance. The quasi-periodic vibrations, which originate from these bifurcations, are investigated numerically. These vibrations are transformed into chaotic motions as a result of the forcing frequency variation. Sub-harmonic vibrations with large amplitudes are analyzed in a wide forcing frequency range close to the second principal resonance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cummings, B.E.: Large-amplitude vibration and response of curved panels. AIAA J. 2, 709–716 (1964)CrossRefGoogle Scholar
  2. 2.
    Leissa, A.W., Kadi, A.S.: Curvature effects on shallow shell vibrations. J. Sound Vib. 16, 173–187 (1971)CrossRefMATHGoogle Scholar
  3. 3.
    Vol’mir, A.S., Logvinskaya, A.A., Rogalevich, V.V.: Nonlinear natural vibrations of rectangular plates and cylindrical panels. Sov. Phys. Doklady 17, 720–721 (1973)Google Scholar
  4. 4.
    Karaesmen, E., Ileri, L., Akkas, N.: Chaotic dynamic analysis of viscoelastic shallow spherical shells. Comput. Struct. 44, 851–857 (1992)CrossRefMATHGoogle Scholar
  5. 5.
    Dekhtyaryuk, E.S., Zakharchenko, T.G., Petryna, Y.S., Krasnopolskaya, T.S.: Four modes competition and chaos in a shell. Chaos 4, 637–650 (1994)CrossRefGoogle Scholar
  6. 6.
    Kobayashi, Y., Leissa, A.W.: Large amplitude free vibration of thick shallow shells supported by shear diaphragms. Int. J. Non-Linear Mech. 30, 57–66 (1995)CrossRefMATHGoogle Scholar
  7. 7.
    Sathyamoorthy, M.: Nonlinear vibrations of moderately thick orthotropic shallow spherical shells. Comput. Struct. 57, 59–65 (1995)CrossRefMATHGoogle Scholar
  8. 8.
    Baumgarten, R., Kreuzer, E.: Bifurcations and subharmonic resonances in multi-degree-of-freedom panel’s models. Meccanica 31, 309–322 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Popov, A.A., Thompson, J.M.T., Croll, J.G.A.: Bifurcation analyses in the parametrically excited vibrations of cylindrical panels. Nonlinear Dyn. 17, 205–225 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Stavridis, L.T.: Dynamic analysis of shallow shells of rectangular base. J. Sound Vib. 218, 861–882 (1998)CrossRefGoogle Scholar
  11. 11.
    Soliman, M.S., Goncalves, P.B.: Chaotic behavior resulting in transient and steady state instabilities of pressure-loaded shallow spherical shells. J. Sound Vib. 259, 497–512 (2003)CrossRefGoogle Scholar
  12. 12.
    Nagai, K., Maruyama, S., Oya, M., Yamaguchi, T.: Chaotic oscillations of a shallow cylindrical shell with a concentrated mass under periodic excitation. Comput. Struct. 82, 2607–2619 (2004)CrossRefGoogle Scholar
  13. 13.
    Amabili, M.: Non-linear vibrations of doubly curved shallow shells. Int. J. Non-Linear Mech. 40, 683–710 (2005)CrossRefMATHGoogle Scholar
  14. 14.
    Amabili, M.: Nonlinear vibrations of circular cylindrical panels. J. Sound Vib. 281, 509–535 (2005)CrossRefGoogle Scholar
  15. 15.
    Thomas, O., Touze, C., Chaigne, A.: Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance. Int. J. Solids Struct. 42, 3339–3373 (2005)CrossRefMATHGoogle Scholar
  16. 16.
    Amabili, M.: Theory and experiments for large amplitude vibrations of circular cylindrical panels with geometric imperfections. J. Sound Vib. 298, 43–72 (2006)CrossRefGoogle Scholar
  17. 17.
    Nagai, K., Maruyama, S., Murata, T., Yamaguchi, T.: Experiments and analysis on chaotic vibrations of a shallow cylindrical shell-panel. J. Sound Vib. 305, 492–520 (2007)CrossRefGoogle Scholar
  18. 18.
    Kurpa, L., Pilgun, G., Amabili, M.: Nonlinear vibrations of shallow shells with complex boundary: \(R\)-functions methods and experiments. J. Sound Vib. 306, 580–600 (2007)CrossRefGoogle Scholar
  19. 19.
    Kurpa, L.V., Rvachev, V.L., Ventsel, E.: The R-function method for the free vibration analysis of thin orthotropic plates of arbitrary shape. J. Sound Vib. 261, 109–122 (2003)CrossRefGoogle Scholar
  20. 20.
    Kurpa, L.V., Pilgun, G., Ventsel, E.: Application of the R-function method to nonlinear vibrations of thin plates of arbitrary shape. J. Sound Vib. 284, 379–392 (2005)CrossRefMATHGoogle Scholar
  21. 21.
    Kurpa, L.V., Lyubitska, K.I., Shmatko, A.V.: Solution of vibration problems for shallow shells of arbitrary form by the R-function method. J. Sound Vib. 279, 1071–1084 (2005)CrossRefMATHGoogle Scholar
  22. 22.
    Touze, C., Amabili, M., Thomas, O.: Reduced-order models for large-amplitude vibrations of shells including in-plane inertia. Comput. Methods Appl. Mech. Eng. 197, 2030–2045 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Alijani, F., Amabili, M., Bakhtiari-Nejad, F.: On the accuracy of the multiple scales method for non-linear vibrations of doubly curved shallow shells. Int. J. Non-Linear Mech. 46, 170–179 (2011)CrossRefMATHGoogle Scholar
  24. 24.
    Pilgun, G., Amabili, M.: Non-linear vibrations of shallow circular cylindrical panels with complex geometry. Meshless discretization with the R-functions method. Int. J. Non-Linear Mech. 47, 137–152 (2012)CrossRefGoogle Scholar
  25. 25.
    Fu, J., To, C.W.S.: Bulging factors and geometrically nonlinear responses of cracked shell structures under internal pressure. Eng. Struct. 41, 456–463 (2012)CrossRefGoogle Scholar
  26. 26.
    Civalek, O.: Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations. Int. J. Press. Vessels Pip. 113, 1–9 (2014)CrossRefGoogle Scholar
  27. 27.
    Breslavsky, I.D., Avramov, K.V.: Nonlinear modes of cylindrical panels with complex boundaries. \(R\)-function method. Meccanica 46, 817–832 (2011)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Breslavsky, I.D., Strel’nikova, E.A., Avramov, K.V.: Dynamics of shallow shells with geometrical nonlinearity interacting with fluid. Comput. Struct. 89, 496–506 (2011)CrossRefGoogle Scholar
  29. 29.
    Avramov, K.V., Tyshkovets, O., Maksymenko-Sheyko, K.V.: Analysis of nonlinear free vibration of circular plates with cut-outs using \(R\)-function method. ASME J. Vib. Acoust. 132, 205–212 (2010)CrossRefGoogle Scholar
  30. 30.
    Avramov, K.V., Breslavsky, I.D.: Vibrations of shallow shells rectangular in the horizontal projection with two freely supported opposite edges. Mech. Solids 48, 186–193 (2013)CrossRefGoogle Scholar
  31. 31.
    Avramov, K.V., Papazov, S.V., Breslavsky, I.D.: Dynamic instability of shallow shells in three-dimensional incompressible inviscid potential flow. J. Sound Vib. 394, 593–611 (2017)CrossRefGoogle Scholar
  32. 32.
    Amabili, M.: Non-linearities in rotation and thickness deformation in a new third-order thickness deformation theory for static and dynamic analysis of isotropic and laminated doubly curved shells. Int. J. Non-Linear Mech. 69, 109–128 (2015)CrossRefGoogle Scholar
  33. 33.
    Amabili, M., Paıdoussis, M.P.: Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid structure interaction. Appl. Mech. Rev. 56, 349–381 (2003)CrossRefGoogle Scholar
  34. 34.
    Alijani, F., Amabili, M.: Non-linear vibrations of shells: a literature review from 2003 to 2013. Int. J. Non-Linear Mech. 58, 233–257 (2014)CrossRefGoogle Scholar
  35. 35.
    Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  36. 36.
    Meirovitch, L.: Elements of Vibration Theory. McGraw-Hill, New York (1998)MATHGoogle Scholar
  37. 37.
    Awrejcewicz, J., Kurpa, L., Osetrov, A.: Investigation of the stress-strain state of the laminated shallow shells by R-functions method combined with spline-approximation. ZAMM J Appl. Math. Mech. 96, 458–467 (2001)MATHGoogle Scholar
  38. 38.
    Hollig, K., Reif, U., Wipper, J.: Weighted extended B-spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39, 442–462 (2001)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Seydel, R.: Tutorial on continuation. Int. J. Bifurc. Chaos 1, 3–11 (1991)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Seydel, R.: Nonlinear computation. Int. J. Bifurc. Chaos 7, 2105–2126 (1997)CrossRefMATHGoogle Scholar
  41. 41.
    Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, Berlin (1989)CrossRefMATHGoogle Scholar
  42. 42.
    Moon, F.C.: Chaotic Vibrations. An Introduction for Applied Scientists and Engineers. Wiley, New York (1987)MATHGoogle Scholar
  43. 43.
    Avramov, K.V.: Bifurcation behavior of steady vibrations of cantilever plates with geometrical nonlinearities interacting with three-dimensional inviscid potential flow. J. Vib. Control 25, 1198–1216 (2016)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)CrossRefMATHGoogle Scholar
  45. 45.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Vibrations, Podgorny Institute for Mechanical EngineeringNational Academy of Science of UkraineKharkivUkraine
  2. 2.Department of Continuum MechanicsNational Technical University “KhPI”KharkivUkraine

Personalised recommendations