Skip to main content
Log in

Periodic, quasi-periodic, and chaotic geometrically nonlinear forced vibrations of a shallow cantilever shell

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Geometrically nonlinear forced vibrations of a cantilever shallow shell are analyzed. A finite degree of freedom nonlinear dynamical system is derived using the assumed mode method. The Neimark–Sacker bifurcations are detected close to the first principal resonance. The quasi-periodic vibrations, which originate from these bifurcations, are investigated numerically. These vibrations are transformed into chaotic motions as a result of the forcing frequency variation. Sub-harmonic vibrations with large amplitudes are analyzed in a wide forcing frequency range close to the second principal resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cummings, B.E.: Large-amplitude vibration and response of curved panels. AIAA J. 2, 709–716 (1964)

    Article  Google Scholar 

  2. Leissa, A.W., Kadi, A.S.: Curvature effects on shallow shell vibrations. J. Sound Vib. 16, 173–187 (1971)

    Article  MATH  Google Scholar 

  3. Vol’mir, A.S., Logvinskaya, A.A., Rogalevich, V.V.: Nonlinear natural vibrations of rectangular plates and cylindrical panels. Sov. Phys. Doklady 17, 720–721 (1973)

    Google Scholar 

  4. Karaesmen, E., Ileri, L., Akkas, N.: Chaotic dynamic analysis of viscoelastic shallow spherical shells. Comput. Struct. 44, 851–857 (1992)

    Article  MATH  Google Scholar 

  5. Dekhtyaryuk, E.S., Zakharchenko, T.G., Petryna, Y.S., Krasnopolskaya, T.S.: Four modes competition and chaos in a shell. Chaos 4, 637–650 (1994)

    Article  Google Scholar 

  6. Kobayashi, Y., Leissa, A.W.: Large amplitude free vibration of thick shallow shells supported by shear diaphragms. Int. J. Non-Linear Mech. 30, 57–66 (1995)

    Article  MATH  Google Scholar 

  7. Sathyamoorthy, M.: Nonlinear vibrations of moderately thick orthotropic shallow spherical shells. Comput. Struct. 57, 59–65 (1995)

    Article  MATH  Google Scholar 

  8. Baumgarten, R., Kreuzer, E.: Bifurcations and subharmonic resonances in multi-degree-of-freedom panel’s models. Meccanica 31, 309–322 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Popov, A.A., Thompson, J.M.T., Croll, J.G.A.: Bifurcation analyses in the parametrically excited vibrations of cylindrical panels. Nonlinear Dyn. 17, 205–225 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Stavridis, L.T.: Dynamic analysis of shallow shells of rectangular base. J. Sound Vib. 218, 861–882 (1998)

    Article  Google Scholar 

  11. Soliman, M.S., Goncalves, P.B.: Chaotic behavior resulting in transient and steady state instabilities of pressure-loaded shallow spherical shells. J. Sound Vib. 259, 497–512 (2003)

    Article  Google Scholar 

  12. Nagai, K., Maruyama, S., Oya, M., Yamaguchi, T.: Chaotic oscillations of a shallow cylindrical shell with a concentrated mass under periodic excitation. Comput. Struct. 82, 2607–2619 (2004)

    Article  Google Scholar 

  13. Amabili, M.: Non-linear vibrations of doubly curved shallow shells. Int. J. Non-Linear Mech. 40, 683–710 (2005)

    Article  MATH  Google Scholar 

  14. Amabili, M.: Nonlinear vibrations of circular cylindrical panels. J. Sound Vib. 281, 509–535 (2005)

    Article  Google Scholar 

  15. Thomas, O., Touze, C., Chaigne, A.: Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance. Int. J. Solids Struct. 42, 3339–3373 (2005)

    Article  MATH  Google Scholar 

  16. Amabili, M.: Theory and experiments for large amplitude vibrations of circular cylindrical panels with geometric imperfections. J. Sound Vib. 298, 43–72 (2006)

    Article  Google Scholar 

  17. Nagai, K., Maruyama, S., Murata, T., Yamaguchi, T.: Experiments and analysis on chaotic vibrations of a shallow cylindrical shell-panel. J. Sound Vib. 305, 492–520 (2007)

    Article  Google Scholar 

  18. Kurpa, L., Pilgun, G., Amabili, M.: Nonlinear vibrations of shallow shells with complex boundary: \(R\)-functions methods and experiments. J. Sound Vib. 306, 580–600 (2007)

    Article  Google Scholar 

  19. Kurpa, L.V., Rvachev, V.L., Ventsel, E.: The R-function method for the free vibration analysis of thin orthotropic plates of arbitrary shape. J. Sound Vib. 261, 109–122 (2003)

    Article  Google Scholar 

  20. Kurpa, L.V., Pilgun, G., Ventsel, E.: Application of the R-function method to nonlinear vibrations of thin plates of arbitrary shape. J. Sound Vib. 284, 379–392 (2005)

    Article  MATH  Google Scholar 

  21. Kurpa, L.V., Lyubitska, K.I., Shmatko, A.V.: Solution of vibration problems for shallow shells of arbitrary form by the R-function method. J. Sound Vib. 279, 1071–1084 (2005)

    Article  MATH  Google Scholar 

  22. Touze, C., Amabili, M., Thomas, O.: Reduced-order models for large-amplitude vibrations of shells including in-plane inertia. Comput. Methods Appl. Mech. Eng. 197, 2030–2045 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Alijani, F., Amabili, M., Bakhtiari-Nejad, F.: On the accuracy of the multiple scales method for non-linear vibrations of doubly curved shallow shells. Int. J. Non-Linear Mech. 46, 170–179 (2011)

    Article  MATH  Google Scholar 

  24. Pilgun, G., Amabili, M.: Non-linear vibrations of shallow circular cylindrical panels with complex geometry. Meshless discretization with the R-functions method. Int. J. Non-Linear Mech. 47, 137–152 (2012)

    Article  Google Scholar 

  25. Fu, J., To, C.W.S.: Bulging factors and geometrically nonlinear responses of cracked shell structures under internal pressure. Eng. Struct. 41, 456–463 (2012)

    Article  Google Scholar 

  26. Civalek, O.: Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations. Int. J. Press. Vessels Pip. 113, 1–9 (2014)

    Article  Google Scholar 

  27. Breslavsky, I.D., Avramov, K.V.: Nonlinear modes of cylindrical panels with complex boundaries. \(R\)-function method. Meccanica 46, 817–832 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Breslavsky, I.D., Strel’nikova, E.A., Avramov, K.V.: Dynamics of shallow shells with geometrical nonlinearity interacting with fluid. Comput. Struct. 89, 496–506 (2011)

    Article  Google Scholar 

  29. Avramov, K.V., Tyshkovets, O., Maksymenko-Sheyko, K.V.: Analysis of nonlinear free vibration of circular plates with cut-outs using \(R\)-function method. ASME J. Vib. Acoust. 132, 205–212 (2010)

    Article  Google Scholar 

  30. Avramov, K.V., Breslavsky, I.D.: Vibrations of shallow shells rectangular in the horizontal projection with two freely supported opposite edges. Mech. Solids 48, 186–193 (2013)

    Article  Google Scholar 

  31. Avramov, K.V., Papazov, S.V., Breslavsky, I.D.: Dynamic instability of shallow shells in three-dimensional incompressible inviscid potential flow. J. Sound Vib. 394, 593–611 (2017)

    Article  Google Scholar 

  32. Amabili, M.: Non-linearities in rotation and thickness deformation in a new third-order thickness deformation theory for static and dynamic analysis of isotropic and laminated doubly curved shells. Int. J. Non-Linear Mech. 69, 109–128 (2015)

    Article  Google Scholar 

  33. Amabili, M., Paıdoussis, M.P.: Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid structure interaction. Appl. Mech. Rev. 56, 349–381 (2003)

    Article  Google Scholar 

  34. Alijani, F., Amabili, M.: Non-linear vibrations of shells: a literature review from 2003 to 2013. Int. J. Non-Linear Mech. 58, 233–257 (2014)

    Article  Google Scholar 

  35. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  36. Meirovitch, L.: Elements of Vibration Theory. McGraw-Hill, New York (1998)

    MATH  Google Scholar 

  37. Awrejcewicz, J., Kurpa, L., Osetrov, A.: Investigation of the stress-strain state of the laminated shallow shells by R-functions method combined with spline-approximation. ZAMM J Appl. Math. Mech. 96, 458–467 (2001)

    MATH  Google Scholar 

  38. Hollig, K., Reif, U., Wipper, J.: Weighted extended B-spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39, 442–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Seydel, R.: Tutorial on continuation. Int. J. Bifurc. Chaos 1, 3–11 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Seydel, R.: Nonlinear computation. Int. J. Bifurc. Chaos 7, 2105–2126 (1997)

    Article  MATH  Google Scholar 

  41. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  42. Moon, F.C.: Chaotic Vibrations. An Introduction for Applied Scientists and Engineers. Wiley, New York (1987)

    MATH  Google Scholar 

  43. Avramov, K.V.: Bifurcation behavior of steady vibrations of cantilever plates with geometrical nonlinearities interacting with three-dimensional inviscid potential flow. J. Vib. Control 25, 1198–1216 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  45. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Avramov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avramov, K.V., Malyshev, S.E. Periodic, quasi-periodic, and chaotic geometrically nonlinear forced vibrations of a shallow cantilever shell. Acta Mech 229, 1579–1595 (2018). https://doi.org/10.1007/s00707-017-2087-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2087-x

Navigation