Skip to main content
Log in

The frequency dependence of microstructure evolution in a ferroelectric nano-film during AC dynamic polarization switching

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The frequency dependence of the electromechanical response of a barium titanate nano-thin film was studied through phase-field simulation. A two-dimensional phase-field model based on Landau–Devonshire energy density function was established in this work. The time-dependent Ginzburg–Landau equation was utilized to calculate the dynamics of the microstructure upon the application of an AC electric field. A segment of barium titanate thin film was modeled with 20 nm in thickness and 80 nm in width. Periodic boundary conditions were applied to both ends of the nano-thin film to represent an infinite length-to-thickness ratio. It was observed from the phase-field results that the loading frequency of the electric field can noticeably affect the hysteresis and butterfly loops of the nano-thin film through competition with the electric dipole evolution. A high-frequency electric field tends to yield a close-to-linear response of the thin film. Meanwhile, it was discovered that the existence of \(180^{\circ }\) domain walls and their dynamics (oscillation) within the thin film have remarkable influence on the overall response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dawber, M., Rabe, K.M., Scott, J.F.: Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083 (2005)

    Article  Google Scholar 

  2. Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I.: Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006)

    Article  Google Scholar 

  3. Song, T.K., Aggarwal, S., Prakash, A.S., Yang, B., Ramesh, R.: Activation field of ferroelectric (Pb, La)(Zr, Ti)O\(_{3}\) thin film capacitors. Appl. Phys. Lett. 71, 2211 (1997)

    Article  Google Scholar 

  4. Singh, S.K., Maruyama, K., Ishiwara, H.: Frequency-dependent polarization in BiFeO\(_{3}\) thin films. Integr. Ferroelectr. 98, 83–89 (2008)

    Article  Google Scholar 

  5. Chen, Z.H., Jiang, A.Q., Tang, T.A.: The effects of Pb excess and frequency on polarization-voltage hysteresis loops in Pb (Zr\(_{0.3}\)Ti\(_{0.7})\)O\(_{3}\) thin films. Integr. Ferroelectr. 113, 41–48 (2010)

    Article  Google Scholar 

  6. Yang, S.M., Jo, J.Y., Kim, T.H., Yoon, J.G., Song, T.K., Lee, H.N., Marton, Z., Park, S., Jo, Y., Noh, T.W.: AC dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops. Phys. Rev. B 82, 174125 (2010)

    Article  Google Scholar 

  7. Tang, M.H., Dong, G.J., Sugiyama, Y., Ishiwara, H.: Frequency-dependent electrical properties in Bi(Zn\(_{0.5}\)Ti\(_{0.5})\)O\(_{3}\) doped Pb (Zr\(_{0.4}\)Ti\(_{0.6})\)O\(_{3}\) thin film for ferroelectric memory application. Semicond. Sci. Technol. 25, 035006 (2010)

    Article  Google Scholar 

  8. Bozgeyik, M.S.: Frequency dependent ferroelectric properties of BaZrO\(_{3}\) modified Sr\(_{0.8}\)Bi\(_{2.2}\)Ta\(_{2}\)O\(_{9}\) thin films. Chin. J. Phys. 51, 327–336 (2013)

    Google Scholar 

  9. Wang, Y., Chen, W., Wang, B., Zheng, Y.: Ultrathin ferroelectric films: growth, characterization, physics and applications. Materials 7, 6377–6485 (2014)

    Article  Google Scholar 

  10. Martin, L.W., Rappe, A.M.: Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2016)

    Article  Google Scholar 

  11. Choi, K.J., Biegalski, M., Li, Y.L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y.B., Pan, X.Q., Gopalan, V., Chen, L.Q.: Enhancement of ferroelectricity in strained BaTiO\(_{3}\) thin films. Science 306, 1005–1009 (2004)

    Article  Google Scholar 

  12. Jiang, A.Q., Meng, X.J., Zhang, D.W., Park, M.H., Yoo, S., Kim, Y.J., Scott, J.F., Hwang, C.S.: Giant dielectric permittivity in ferroelectric thin films: domain wall ping pong. Sci. Rep. 5, 14618 (2015)

    Article  Google Scholar 

  13. Vasudevan, R.K., Matsumoto, Y., Cheng, X., Imai, A., Maruyama, S., Xin, H.L., Okatan, M.B., Jesse, S., Kalinin, S.V., Nagarajan, V.: Deterministic arbitrary switching of polarization in a ferroelectric thin film. Nat. Commun. 5, 4971 (2014)

    Article  Google Scholar 

  14. Aguado-Puente, P., Junquera, J.: Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations. Phys. Rev. Lett. 100, 177601 (2008)

    Article  Google Scholar 

  15. Hong, L., Soh, A.K., Song, Y.C., Lim, L.C.: Interface and surface effects on ferroelectric nano-thin films. Acta Mater. 56, 2966–2974 (2008)

    Article  Google Scholar 

  16. Su, Y., Chen, H., Li, J.J., Soh, A.K., Weng, G.J.: Effects of surface tension on the size-dependent ferroelectric characteristics of free-standing BaTiO3 nano-thin films. J. Appl. Phys. 110, 084108 (2011)

    Article  Google Scholar 

  17. Chen, W., Zheng, Y., Feng, X., Wang, B.: Utilizing mechanical loads and flexoelectricity to induce and control complicated evolution of domain patterns in ferroelectric nanofilms. J. Mech. Phys. Solids 79, 108–33 (2015)

    Article  MATH  Google Scholar 

  18. Jia, C.L., Urban, K.W., Alexe, M., Hesse, D., Vrejoiu, I.: Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr, Ti)O\(_{3}\). Science 331, 1420–1423 (2011)

    Article  Google Scholar 

  19. Su, Y.: On the dynamics of vortex structure in ferroelectric nanoparticles. Acta Mech. 224, 1175–1184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, N., Su, Y., Weng, G.J.: A phase-field study on the hysteresis behaviors and domain patterns of nanocrystalline ferroelectric polycrystals. J. Appl. Phys. 113, 204106 (2013)

    Article  Google Scholar 

  21. Su, Y., Weng, G.J.: Chapter 3: phase field approach and micromechanics in ferroelectric crystals. In: Li, S., Gao, X.L. (eds.) Handbook of Micromechanics and Nanomechanics, pp. 73–140. Pan Stanford, Boca Raton (2013)

    Google Scholar 

  22. Liu, N., Su, Y.: The grain-size-dependent behaviors of nano-grained ferroelectric polycrystals: a phase-field study. Acta Mech. 225, 1335–1345 (2014)

    Article  MATH  Google Scholar 

  23. Su, Y., Liu, N., Weng, G.J.: A phase field study of frequency dependence and grain-size effects in nanocrystalline ferroelectric polycrystals. Acta Mater. 87, 293–308 (2015)

    Article  Google Scholar 

  24. Liu, N., Su, Y.: A comparative study of the phase-field approach in modeling the frequency-dependent characteristics of ferroelectric materials. Acta Mech. 227, 2671–2682 (2016)

    Article  Google Scholar 

  25. Su, Y., Kang, H., Wang, Y., Li, J., Weng, G.J.: Intrinsic versus extrinsic effects of the grain boundary on the properties of ferroelectric nanoceramics. Phys. Rev. B 95, 054121 (2017)

    Article  Google Scholar 

  26. Hossain, M.E., Liu, S., O’Brien, S., Li, J.: Frequency-dependent ferroelectric behavior of BaMn\(_{3}\)Ti\(_{4}\)O\(_{14.25}\) at room temperature. Appl. Phys. Lett. 107, 032904 (2015)

    Article  Google Scholar 

  27. Wang, Y.C., Shen, M.W.: Uniaxial dynamic mechanical responses of ferroelastic materials under temperature cycling via phase field modeling. Phys. Status Solidi B 253, 1428–1439 (2016)

    Article  Google Scholar 

  28. Su, Y., Landis, C.M.: Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J. Mech. Phys. Solids 55, 280–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dittmer, R., Jo, W., Aulbach, E., Granzow, T., Rödel, J.: Frequency-dependence of large-signal properties in lead-free piezoceramics. J. Appl. Phys. 112, 014101 (2012)

    Article  Google Scholar 

  30. Liu, Y.T., Chiu, S.J., Lee, H.Y., Chen, S.Y.: Fabrication and ferroelectric properties of BiFeO\(_{3}\)/LaNiO\(_{3}\) artificial superlattice structures grown by radio-frequency magnetron-sputtering. Thin Solid Films 529, 66–70 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Weng.

Additional information

This paper is dedicated to the memory of Franz Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Weng, G.J. The frequency dependence of microstructure evolution in a ferroelectric nano-film during AC dynamic polarization switching. Acta Mech 229, 795–805 (2018). https://doi.org/10.1007/s00707-017-2000-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2000-7

Navigation