Skip to main content
Log in

A comparative study of the phase-field approach in modeling the frequency-dependent characteristics of ferroelectric materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, the electromechanical behaviors of ferroelectric materials are numerically studied with selected electric field frequency varying from 10 to 1000 Hz. The material under investigation is barium titanate (\(\hbox {BaTiO}_{3})\). We take the view that the frequency dependency is a result of direct competition between the speed of the microstructural evolution and the speed of the external field. Three phase-field models were established to investigate the frequency-dependent characteristics, namely the single-crystal model (Model-I), the polycrystal model with zero thickness of grain-grain interface (Model-II), and the polycrystal model with the grain boundary affected zone (Model-III). The frequency-dependent ferroelectric properties, e.g., the coercive electric field, the remnant polarization and the actuation strain, are numerically examined based on these three models. The phase-field results show that the frequency dependence becomes more remarkable as the level of the complexity of the crystalline microstructure gets higher. The results based on Model-I and Model-II confirm that the resistance to the domain switching mostly comes from the dipole–dipole interaction and the resistance gets stronger with higher field frequency. High-frequency characteristics were observed in the results based on Model-III, in the form of elliptic hysteresis loop and kidney-shaped butterfly loop. It was further revealed that smaller grain size causes stronger grain-boundary effect and tends to promote the influence of the dynamic field. As a result, the high-frequency characteristics can be more easily attained with smaller grain size. More interestingly, a new very-high-frequency response can be observed with the enhanced grain-boundary effect: the hysteresis ellipse completely shifts to the positive-polarization zone, and the kidney-shaped butterfly loop evolves to a tilted ellipse. Such frequency-dependent characteristics are discussed based on the underlying domain-switching dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I.: Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006)

    Article  Google Scholar 

  2. Bernstein, J.J., Finberg, S.L., Houston, K., Niles, L.C., Chen, H.D., Cross, L.E., Li, K.K., Udayakumar, E.: Micromachined high frequency ferroelectric sonar transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 960–969 (1997)

    Article  Google Scholar 

  3. Luo, B., Wang, X., Zhao, Q., Li, L.: Synthesis, characterization and dielectric properties of surface functionalized ferroelectric ceramic/epoxy resin composites with high dielectric permittivity. Compos. Sci. Technol. 112, 1–7 (2015)

    Article  Google Scholar 

  4. Lente, M.H., Picinin, A., Rino, J.P., Eiras, J.A.: 90 degrees domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process. J. Appl. Phys. 95, 2646–2653 (2003)

    Article  Google Scholar 

  5. Eiras, J.A., Lente, M.H.: Domain reorientation in ferroelectric-ferroelastic ceramics. Ferroelectrics 363, 79–85 (2008)

    Article  Google Scholar 

  6. Jin, L.W., Sum Y.: The experimental investigations on frequency dependence of ferroelectric properties in soft PZT-5 ceramics. In: ASME 2012 international mechanical engineering congress and exposition, pp. 643–649. Houston (2012)

  7. Chen, H.S., Pei, Y.M., Liu, B., Fang, D.N.: Rate dependant heat generation in single cycle of domain switching of lead zirconate titanate via in-situ spontaneous temperature measurement. Appl. Phys. Lett. 102, 242912 (2013)

    Article  Google Scholar 

  8. Hossain, M.E., Liu, S., O’Brien, S., Li, J.: Frequency-dependent ferroelectric behavior of BaMn3Ti4O14. 25 at room temperature. Appl. Phys. Lett. 107, 032904 (2015)

    Article  Google Scholar 

  9. Chen, H.S., Wang, H.L., Pei, Y.M., Wei, Y.J., Liu, B., Fang, D.N.: Crack instability of ferroelectric solids under alternative electric loading. J. Mech. Phys. Solids 81, 75–90 (2015)

    Article  MathSciNet  Google Scholar 

  10. Li, J., Weng, G.J.: A theory of domain switch for the nonlinear behaviour of ferroelectrics. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 455, 3493–3511 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Su, Y., Weng, G.J.: The shift of Curie temperature and evolution of ferroelectric domain in ferroelectric crystals. J. Mech. Phys. Solids 53, 2071–2099 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Su, Y., Weng, G.J.: A polycrystal model for the anisotropic behavior of a fully poled ferroelectric ceramic. J. Appl. Phys. 100, 114110 (2006)

    Article  Google Scholar 

  13. Su, Y., Weng, G.J.: Microstructural evolution and overall response of an initially isotropic ferroelectric polycrystal under an applied electric field. Mech. Mater. 41, 1179–1191 (2009a)

    Article  Google Scholar 

  14. Weng, G.J.: The Prager Medal lecture: micromechanics and some aspects of phase fields in ferroelectric crystals. Acta Mech. 225, 979–998 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Uetsuji, Y., Hata, T., Kuramae, H., Tsuchiya, K.: Homogenization modeling of domain switching in ferroelectric materials. Acta Mech. 225, 2969–2986 (2014)

    Article  Google Scholar 

  16. Seelecke, S., Kim, S.J., Ball, B.L., Smith, R.C.: A rate-dependent two-dimensional free energy model for ferroelectric single crystals. Contin. Mech. Therm. 17, 337–350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, S.J.: Predictions of tensile creep behavior of a PZT wafer by a normally distributed free energy model. Mech. Mater. 41, 1253–1263 (2009)

    Article  Google Scholar 

  18. Su, Y., Du, J.N.: Existence conditions for single-vertex structure of polarization in ferroelectric nanoparticles. Appl. Phys. Lett. 95, 012903 (2009b)

    Article  Google Scholar 

  19. Su, Y., Du, J.N.: Effect of intrinsic surface stress on single-vertex structure of polarization in ferroelectric nanoparticles. Appl. Phys. Lett. 96, 162905 (2010)

    Article  Google Scholar 

  20. Wang, J., Su, Y.: Stability of polarization vortices within two interacting ferroelectric nanoparticles. Phys. Lett. A 375, 1019–1022 (2011)

    Article  Google Scholar 

  21. Su, Y.: On the dynamics of vortex structure in ferroelectric nanoparticles. Acta Mech. 224, 1175–1184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, W.J., Zheng, Y.: Vortex switching in ferroelectric nanodots and its feasibility by a homogeneous electric field: effects of substrate, dislocations and local clamping force. Acta Mater. 88, 41–54 (2015)

    Article  Google Scholar 

  23. Su, Y., Chen, H., Li, J.J., Soh, A.K., Weng, G.J.: Effects of surface tension on the size-dependent ferroelectric characteristics of free-standing \({\text{ BaTiO }_3}\) nano-thin films. J. Appl. Phys. 110, 084108 (2011)

    Article  Google Scholar 

  24. Ma, D.C., Zheng, Y., Wang, B., Woo, C.H.: Domain structures of ferroelectric thin film controlled by oxidizing atmosphere. Appl. Phys. Lett. 99, 142908 (2011)

    Article  Google Scholar 

  25. Chen, H.T., Soh, A.K., Ni, Y.: Phase field modeling of flexoelectric effects in ferroelectric epitaxial thin films. Acta Mech. 225, 1323–1333 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zuo, Y., Genenko, Y.A., Klein, A., Stein, P., Xu, B.: Domain wall stability in ferroelectrics with space charges. J. Appl. Phys. 115, 084110 (2014)

    Article  Google Scholar 

  27. Liu, N., Su, Y., Weng, G.J.: A phase-field study on the hysteresis behaviors and domain patterns of nanocrystalline ferroelectric polycrystals. J. Appl. Phys. 113, 204106 (2013)

    Article  Google Scholar 

  28. Liu, N., Su, Y.: The grain-size-dependent behaviors of nano-grained ferroelectric polycrystals: a phase-field study. Acta Mech. 225, 1335–1345 (2014)

    Article  MATH  Google Scholar 

  29. Su, Y., Liu, N., Weng, G.J.: A phase field study of frequency dependence and grain-size effects in nanocrystalline ferroelectric polycrystals. Acta Mater. 87, 293–308 (2015)

    Article  Google Scholar 

  30. Chen, G., Sun, X.H., Nie, P., Mei, Y.H., Lu, G.Q., Chen, X.: High-temperature creep behavior of low-temperature-sintered nano-silver paste films. J. Electron. Mater. 41, 782–790 (2012)

    Article  Google Scholar 

  31. Li, X., Chen, G., Wang, L., Mei, Y.H., Chen, X., Lu, G.Q.: Creep properties of low-temperature sintered nano-silver lap shear joints. Mater. Sci. Eng. A Struct. 579, 108–113 (2013)

    Article  Google Scholar 

  32. Li, J., Weng, G.J.: A secant-viscosity composite model for the strain-rate sensitivity of nanocrystalline materials. Int. J. Plast. 23, 2115–2133 (2007)

    Article  MATH  Google Scholar 

  33. Guo, X., Leung, A.Y.T., Chen, A.Y., Ruan, H.H., Lu, J.: Investigation of non-local cracking in layered stainless steel with nanostructured interface. Scripta Mater. 63, 403–406 (2010)

    Article  Google Scholar 

  34. Guo, X., Weng, G.J., Soh, A.K.: Ductility enhancement of layered stainless steel with nanograined interface layers. Comput. Mater. Sci. 55, 350–355 (2012)

    Article  Google Scholar 

  35. Guo, X., Zhang, W.J., Zhu, L.L., Lu, J.: Mesh dependence of transverse cracking in laminated metals with nanograined interface layers. Eng. Fract. Mech. 105, 211–220 (2013)

    Article  Google Scholar 

  36. Rao, M., Krishnamurthy, H.R., Pandit, R.: Magnetic hysteresis in two model spin systems. Phys. Rev. B 42, 856–884 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Su, Y. A comparative study of the phase-field approach in modeling the frequency-dependent characteristics of ferroelectric materials. Acta Mech 227, 2671–2682 (2016). https://doi.org/10.1007/s00707-016-1638-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1638-x

Keywords

Navigation