Skip to main content
Log in

Reflection of ultrasound from a region of cubic material nonlinearity due to harmonic generation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Two models are proposed to obtain information on the material nonlinearity of an inclusion in a solid body. Material nonlinearity is usually generated by the development of material microscale damage. When the region of nonlinear material is large, incidence of ultrasound on the interface between the perfectly joined regions of linear and nonlinear material behavior produces very useful information. Using the continuity condition of stress and displacement at the interface, the harmonics in the nonlinear region, together with the compensatory waves, yield a reflected wave whose amplitude contains the defining constant of the material nonlinearity near the interface. The compensatory waves are introduced to ensure the continuity conditions at the interface. When the nonlinear region is an inclusion, the equivalent body force induced by the material nonlinearity generates a backscattered wave. The backscattered wave is determined in a simple manner by the use of the reciprocity theorem of elastodynamics. The backscattered wave obtained in this manner yields information on the nonlinear material properties and the size of the inclusion. In addition, a model based on the superposition of back-propagated compensatory waves from the two interfaces of the nonlinear region reveals the physical mechanism of wave scattering from the nonlinear inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J.Y., Jacobs, L.J., Qu, J., Littles, J.W.: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120, 1266–1273 (2006)

    Article  Google Scholar 

  2. Valluri, J.S., Balasubramaniam, K., Prakash, R.V.: Creep damage characterization using non-linear ultrasonic techniques. Acta Mater. 58, 2079–2090 (2010)

    Article  Google Scholar 

  3. Pruell, C., Kim, J.Y., Qu, J., Jacobs, L.J.: Evaluation of plasticity driven material damage using Lamb waves. Appl. Phys. Lett. 91, 231911 (2007)

    Article  Google Scholar 

  4. Tiersten, H.F., Baumhauer, J.C: Second harmonic generation of surface waves in isotropic elastic solids. In: 1973 Ultrasonics Symposium. IEEE, pp. 244–247 (1973)

  5. Chen, Z., Tang, G., Zhao, Y., Jacobs, L.J., Qu, J.: Mixing of collinear plane wave pulses in elastic solids with quadratic nonlinearity. J. Acoust. Soc. Am. 136, 2389–2404 (2014)

    Article  Google Scholar 

  6. Deng, M.: Cumulative second-harmonic generation accompanying nonlinear shear horizontal mode propagation in a solid plate. J. Appl. Phys. 84, 3500–3505 (1998)

    Article  Google Scholar 

  7. Deng, M.: Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J. Appl. Phys. 85, 3051–3058 (1999)

    Article  Google Scholar 

  8. De Lima, W.J.N., Hamilton, M.F.: Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819–839 (2003)

    Article  Google Scholar 

  9. Bermes, C., Kim, J.Y., Qu, J., Jacobs, L.J.: Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90, 021901 (2007)

    Article  Google Scholar 

  10. Wang, Y., Achenbach, J.D.: The effect of cubic material nonlinearity on the propagation of torsional wave modes in a pipe. J. Acoust. Soc. Am. 140, 3874–3883 (2016)

    Article  Google Scholar 

  11. Hikata, A., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations. I. Phys. Rev. 144, 469–477 (1966)

    Article  Google Scholar 

  12. Hikata, A., Sewell, J.F.A., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations. II. Phys. Rev. 151, 442–449 (1966)

    Article  Google Scholar 

  13. Liu, Y., Chillara, V.K., Lissenden, C.J., Rose, J.L.: Third harmonic shear horizontal and Rayleigh Lamb waves in weakly nonlinear plates. J. Appl. Phys. 114, 114908 (2013)

    Article  Google Scholar 

  14. Chillara, V.K., Lissenden, C.J.: Constitutive model for third harmonic generation in elastic solids. Int. J. Non Linear Mech. 82, 69–74 (2016)

    Article  Google Scholar 

  15. Zhou, S., Shui, Y.: Nonlinear reflection of bulk acoustic waves at an interface. J. Appl. Phys. 72, 5070–5080 (1992)

    Article  Google Scholar 

  16. Bender, F.A., Kim, J.Y., Jacobs, L.J., Qu, J.: The generation of second harmonic waves in an isotropic solid with quadratic nonlinearity under the presence of a stress-free boundary. Wave Motion 50, 146–161 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Donskoy, D., Sutin, A., Ekimov, A.: Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT E Int. 34, 231–238 (2001)

    Article  Google Scholar 

  18. Richardson, J.M.: Harmonic generation at an unbonded interface—I. Planar interface between semi-infinite elastic media. Int. J. Eng. Sci. 17, 73–85 (1979)

    Article  MATH  Google Scholar 

  19. Biwa, S., Nakajima, S., Ohno, N.: On the acoustic nonlinearity of solid–solid contact with pressure-dependent interface stiffness. J. Appl. Mech. 71, 508–515 (2004)

    Article  MATH  Google Scholar 

  20. Achenbach, J.D., Parikh, O.K., Sotiropoulos, D.A.: Nonlinear effects in the reflection from adhesive bonds. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1401–1407. Springer, New York (1989)

    Chapter  Google Scholar 

  21. Nagy, P.B., McGowan, P., Adler, L.: Acoustic nonlinearities in adhesive joints. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1685–1692. Springer, New York (1990)

    Chapter  Google Scholar 

  22. Zhang, Z., Nagy, P.B., Hassan, W.: Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface. Ultrasonics 65, 165–176 (2016)

    Article  Google Scholar 

  23. Tang, G., Jacobs, L.J., Qu, J.: Scattering of time-harmonic elastic waves by an elastic inclusion with quadratic nonlinearity. J. Acoust. Soc. Am. 131, 2570–2578 (2012)

    Article  Google Scholar 

  24. Rauch, G.C., Leslie, W.C.: The extent and nature of the strength-differential effect in steels. Metall. Trans. 3, 377–389 (1972)

    Article  Google Scholar 

  25. Achenbach, J.D.: Reciprocity in Elastodynamics. Cambridge University Press, London (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 11621062 and 11532001) and the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan D. Achenbach.

Additional information

This paper is dedicated to the memory of Franz Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Achenbach, J.D. Reflection of ultrasound from a region of cubic material nonlinearity due to harmonic generation. Acta Mech 229, 763–778 (2018). https://doi.org/10.1007/s00707-017-1996-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1996-z

Navigation