Skip to main content
Log in

Imperfection sensitivity of the size-dependent nonlinear instability of axially loaded FGM nanopanels in thermal environments

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The nonlinear buckling of thin shell-type structures is sensitive to the initial geometric imperfection. In this study, the imperfection sensitivity of the nonlinear instability of cylindrical nanopanels made of functionally graded material (FGM) is addressed including surface elasticity, aiming to present a background for axial postbuckling behavior of imperfect FGM nanopanels. The material properties are supposed to be graded across the panel thickness in accordance with a simple power law function of the volume fractions of the silicon and aluminum constituents with considering the physical neutral plane position. The non-classical governing differential equations are constructed and then they are deduced to boundary layer-type ones. Afterward, a perturbation-based solution methodology is employed to extract explicit expressions for the size-dependent postbuckling equilibrium paths of FGM nanopanels with and without initial geometric imperfection and corresponding to various panel thicknesses, geometrical parameters, temperature changes and material property gradient indexes. It is displayed that through reduction of the surface elasticity effects for thicker FGM nanopanels, the influence of the initial geometric imperfection on the minimum load of the postbuckling regime increases. This pattern is more significant for FGM nanopanels with a lower value of the material gradient index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  2. Toupin, R.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 485–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)

    Article  MATH  Google Scholar 

  4. Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  5. Lam, D., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  6. Shen, H.-S., Zhang, C.L.: Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Compos. Struct. 92, 1073–1084 (2010)

    Article  Google Scholar 

  7. Wang, B., Zhao, J., Zhou, Sh: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A. Solids 29, 591–599 (2010)

    Article  Google Scholar 

  8. Ansari, R., Sahmani, S., Arash, B.: Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett. A 375, 53–62 (2010)

    Article  Google Scholar 

  9. Ansari, R., Sahmani, S.: Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations. Appl. Math. Model. 37, 7338–7351 (2013)

    Article  MathSciNet  Google Scholar 

  10. Sahmani, S., Bahrami, M.: Nonlocal plate model for dynamic pull-in instability analysis of circular higher-order shear deformable nanoplates including surface stress effect. J. Mech. Sci. Technol. 29, 1151–1161 (2015)

    Article  Google Scholar 

  11. Wang, Y.-G., Lin, W.-H., Liu, N.: Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory. Appl. Math. Model. 39, 117–127 (2015)

    Article  MathSciNet  Google Scholar 

  12. Daneshmehr, A., Rajabpoor, A., Hadi, A.: Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories. Int. J. Eng. Sci. 95, 23–35 (2015)

    Article  MathSciNet  Google Scholar 

  13. Sahmani, S., Aghdam, M.M.: Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory. J. Theor. Biol. 422, 59–71 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sahmani, S., Fattahi, A.M.: Calibration of developed nonlocal anisotropic shear deformable plate model for uniaxial instability of 3D metallic carbon nanosheets using MD simulations. Comput. Methods Appl. Mech. Eng. 322, 187–207 (2017)

    Article  MathSciNet  Google Scholar 

  15. Sahmani, S., Aghdam, M.M.: Size dependency in axial postbuckling behavior of hybrid FGM exponential shear deformable nanoshells based on the nonlocal elasticity theory. Compos. Struct. 166, 104–113 (2017)

    Article  Google Scholar 

  16. Tao, C., Fu, Y.: Thermal buckling and postbuckling analysis of size-dependent composite laminated microbeams based on a new modified couple stress theory. Acta Mech. 228, 1711–1724 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sahmani, S., Aghdam, M.M.: Nonlinear instability of hydrostatic pressurized hybrid FGM exponential shear deformable nanoshells based on nonlocal continuum elasticity. Compos. B Eng. 114, 404–417 (2017)

    Article  Google Scholar 

  18. Sahmani, S., Fattahi, A.M.: Nonlocal size dependency in nonlinear instability of axially loaded exponential shear deformable FG-CNT reinforced nanoshells under heat conduction. Eur. Phys. J. Plus 132, 231 (2017)

    Article  Google Scholar 

  19. Ebrahimi, F., Barati, M.R.: Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects. Acta Mech. 228, 1197–1210 (2017)

    Article  MathSciNet  Google Scholar 

  20. Zhang, H., Wang, C.M., Challamel, N.: Small length scale coefficient for Eringen’s and lattice-based continualized nonlocal circular arches in buckling and vibration. Compos. Struct. 165, 148–159 (2017)

    Article  Google Scholar 

  21. Sahmani, S., Fattahi, A.M.: Development an efficient calibrated nonlocal plate model for nonlinear axial instability of zirconia nanosheets using molecular dynamics simulation. J. Mol. Graph. Model. 75, 20–31 (2017)

    Article  Google Scholar 

  22. Streitz, F.H., Cammarata, R.C., Sieradzki, K.: Surface stress effects on elastic properties, I. Thin metal films. Phys. Rev. B 49, 10699–10706 (1994)

    Article  Google Scholar 

  23. Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effects on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827–1954 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, vol. 1. Longmans-Green, New York (1906)

    MATH  Google Scholar 

  25. Fischer, F.D., Waitz, T., Vollath, D., Simha, N.K.: On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog. Mater. Sci. 53, 481–527 (2008)

    Article  Google Scholar 

  26. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surface. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  28. Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007)

    Article  Google Scholar 

  29. Luo, J., Xiao, Z.M.: Analysis of a screw dislocation interacting with an elliptical nano inhomogeneity. Int. J. Eng. Sci. 47, 883–893 (2009)

    Article  Google Scholar 

  30. Zhao, X.J., Rajapakse, R.K.N.D.: Analytical solutions for a surface loaded isotropic elastic layer with surface energy effects. Int. J. Eng. Sci. 47, 1433–1444 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wang, Z.Q., Zhao, Y.P., Huang, Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010)

    Article  Google Scholar 

  32. Chiu, M.S., Chen, T.: Bending and resonance behavior of nanowires based on Timoshenko beam theory with high-order surface stress effects. Physica E 54, 149–156 (2013)

    Article  Google Scholar 

  33. Ansari, R., Sahmani, S.: Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int. J. Eng. Sci. 49, 1244–1255 (2011)

    Article  Google Scholar 

  34. Ansari, R., Sahmani, S.: Surface stress effects on the free vibration behavior of nanoplates. Int. J. Eng. Sci. 49, 1204–1215 (2011)

    Article  MathSciNet  Google Scholar 

  35. Wang, L.: Surface effect on buckling configuration of nanobeams containing internal flowing fluid: a nonlinear analysis. Physica E 44, 808–812 (2012)

    Article  Google Scholar 

  36. Gao, F., Cheng, Q., Luo, J.: Mechanics of nanowire buckling on elastomeric substrates with consideration of surface stress effects. Physica E 64, 72–77 (2014)

    Article  Google Scholar 

  37. Sahmani, S., Bahrami, M., Ansari, R.: Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams. Compos. Struct. 116, 552–561 (2014)

    Article  Google Scholar 

  38. Shaat, M., Mahmoud, F.F., Gao, X.L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)

    Article  Google Scholar 

  39. Sahmani, S., Bahrami, M., Aghdam, M.M., Ansari, R.: Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams. Compos. Struct. 118, 149–158 (2014)

    Article  Google Scholar 

  40. Liang, X., Hu, S., Shen, S.: Surface effects on the post-buckling of piezoelectric nanowires. Physica E 69, 61–64 (2015)

    Article  Google Scholar 

  41. Sahmani, S., Aghdam, M.M., Bahrami, M.: On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects. Compos. Struct. 121, 377–385 (2015)

    Article  Google Scholar 

  42. Sahmani, S., Bahrami, M., Aghdam, M.M., Ansari, R.: Postbuckling behavior of circular higher-order shear deformable nanoplates including surface energy effects. Appl. Math. Model. 39, 3678–3689 (2015)

    Article  MathSciNet  Google Scholar 

  43. Sahmani, S., Aghdam, M.M.: Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments. Arch. Civil Mech. Eng. 17, 623–638 (2017)

    Article  Google Scholar 

  44. Sahmani, S., Aghdam, M.M., Bahrami, M.: Nonlinear buckling and postbuckling behavior of cylindrical shear deformable nanoshells subjected to radial compression including surface free energy effects. Acta Mech. Solida Sin. 30, 209–222 (2017)

    Article  Google Scholar 

  45. Sahmani, S., Aghdam, M.M., Bahrami, M.: Surface free energy effects on the postbuckling behavior of cylindrical shear deformable nanoshells under combined axial and radial compressions. Meccanica 52, 1329–1352 (2017)

    Article  MathSciNet  Google Scholar 

  46. Fares, M.E., Elmarghany, M.K., Atta, D.: An efficient and simple refined theory for bending and vibration of functionally graded plates. Compos. Struct. 91, 296–305 (2009)

    Article  Google Scholar 

  47. Donnell, L.H.: Beam, Plates and Shells. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  48. Shen, H.-S.: Postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations subjected to lateral pressure in thermal environments. Eng. Struct. 122, 174–183 (2016)

    Article  Google Scholar 

  49. Shen, H.-S., Xiang, Y.: Postbuckling of pressure-loaded nanotube-reinforced composite doubly curved panels resting on elastic foundations in thermal environments. Int. J. Mech. Sci. 107, 225–234 (2016)

    Article  Google Scholar 

  50. Shen, H.-S., Wang, H.: Postbuckling of pressure-loaded FGM doubly curved panels resting on elastic foundations in thermal environments. Thin Walled Struct. 100, 124–133 (2016)

    Article  Google Scholar 

  51. Sahmani, S., Bahrami, M., Aghdam, M.M.: Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression. Int. J. Eng. Sci. 99, 92–106 (2016)

    Article  MathSciNet  Google Scholar 

  52. Sahmani, S., Aghdam, M.M., Akbarzadeh, A.H.: Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load. Mater. Des. 105, 341–351 (2016)

    Article  Google Scholar 

  53. Sahmani, S., Aghdam, M.M.: Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity. Int. J. Mech. Sci. 122, 129–142 (2017)

    Article  Google Scholar 

  54. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Sahmani or A. M. Fattahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahmani, S., Fattahi, A.M. Imperfection sensitivity of the size-dependent nonlinear instability of axially loaded FGM nanopanels in thermal environments. Acta Mech 228, 3789–3810 (2017). https://doi.org/10.1007/s00707-017-1912-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1912-6

Navigation