Skip to main content

Advertisement

Log in

Surface free energy effects on the postbuckling behavior of cylindrical shear deformable nanoshells under combined axial and radial compressions

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the traditional continuum mechanics, the effects of surface free energy are generally ignored. However, this cannot be the case for nanostructures because of their high surface to volume ratio; surface energy plays an important role in the mechanical responses. In the present study, the nonlinear buckling and postbuckling characteristics of cylindrical nanoshells subjected to combined axial and radial compressions are investigated in the presence of surface energy effects. To this end, Gurtin–Murdoch elasticity theory is implemented into the classical first-order shear deformation shell theory to develop an efficient size-dependent shell model incorporating surface free energy effects. Subsequently, a boundary layer theory is employed including surface effects in conjunction with the nonlinear prebuckling deformations, the large postbuckling deflections and the initial geometric imperfection. Finally, a solution methodology based on a two-stepped singular perturbation technique is utilized to obtain the size-dependent critical buckling loads and equilibrium postbuckling paths corresponding to the both axial dominated and radial dominated loading cases. It is observed that for the both axial dominated and radial dominated loading cases, surface free energy effects cause to increase the both critical buckling load and critical end-shortening of shear deformable nanoshell made of silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Craighead HG (2000) Nanoelectromechanical systems. Science 290:1532–1535

    Article  ADS  Google Scholar 

  2. Shen H-S, Zhang CL (2010) Torsional buckling and postbuckling of double-walle carbon nanotubes by nonlocal shear deformable shell model. Compos Struct 92:1073–1084

    Article  Google Scholar 

  3. Wang B, Zhao J, Zhou S (2010) A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur J Mech A/Solids 29:591–599

    Article  Google Scholar 

  4. Xia W, Wang L, Yin L (2010) Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int J Eng Sci 48:2044–2053

    Article  MathSciNet  MATH  Google Scholar 

  5. Ansari R, Sahmani S, Arash B (2010) Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys Lett A 375:53–62

    Article  ADS  Google Scholar 

  6. Ansari R, Sahmani S, Rouhi H (2011) Axial buckling analysis of single-walled carbon nanotubes in thermal environments via Rayleigh-Ritz technique. Comput Mater Sci 50:3050–3055

    Article  Google Scholar 

  7. Ansari R, Gholami R, Sahmani S (2011) Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos Struct 94:221–228

    Article  MATH  Google Scholar 

  8. Ansari R, Sahmani S (2012) Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models. Commun Nonlinear Sci Numer Simul 17:1965–1979

    Article  ADS  MathSciNet  Google Scholar 

  9. Ansari R, Sahmani S (2013) Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations. Appl Math Model 37:7338–7351

    Article  MathSciNet  Google Scholar 

  10. Sahmani S, Ansari R (2013) Size-dependent buckling analysis of functionally graded third-order shear deformable microbeams including thermal environment effect. Appl Math Model 37:9499–9515

    Article  MathSciNet  Google Scholar 

  11. Sahmani S, Ansari R (2013) On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory. Compos Struct 95:430–442

    Article  Google Scholar 

  12. Sahmani S, Ansari R, Gholami R, Darvizeh A (2013) Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory. Compos B Eng 51:44–53

    Article  Google Scholar 

  13. Shen H-S (2013) Nonlocal shear deformable shell model for torsional buckling and postbuckling of microtubules in thermal environment. Mech Res Commun 54:83–95

    Article  Google Scholar 

  14. Lazopoulos AK, Lazopoulos KA, Palassopoulos G (2014) Nonlinear bending and buckling for strain gradient elastic beams. Appl Math Model 38:253–262

    Article  MathSciNet  Google Scholar 

  15. Sahmani S, Bahrami M, Ansari R (2014) Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory. Compos Struct 110:219–230

    Article  Google Scholar 

  16. Akgöz B, Civalek Ö (2014) Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int J Eng Sci 85:90–104

    Article  Google Scholar 

  17. Li YS, Cai ZY, Shi SY (2014) Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory. Compos Struct 111:522–529

    Article  Google Scholar 

  18. Wang Y-G, Lin W-H, Liu N (2015) Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory. Appl Math Model 39:117–127

    Article  MathSciNet  Google Scholar 

  19. Dai HL, Wang L, Abdelkefi A, Ni Q (2015) On nonlinear behavior and buckling of fluid-transporting nanotubes. Int J Eng Sci 87:13–22

    Article  Google Scholar 

  20. Wang KF, Wang BL, Kitamura T (2016) A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech Sin 32:83–100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surface. Arch Ration Mech Anal 57:291–323

    Article  MathSciNet  MATH  Google Scholar 

  22. Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14:431–440

    Article  MATH  Google Scholar 

  23. Wang G-F, Feng X-Q (2007) Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl Phys Lett 90:231904–231913

    Article  ADS  Google Scholar 

  24. Abbasion S, Rafsanjani A, Avazmohammadi R, Farshidianfar A (2009) Free vibration of microscaled Timoshenko beams. Appl Phys Lett 95:143122–143123

    Article  ADS  Google Scholar 

  25. Tian L, Rajapakse RKND (2007) Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. Int J Solids Struct 44:7988–8005

    Article  MATH  Google Scholar 

  26. Lü CF, Chen WQ, Lim CW (2009) Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies. Compos Sci Technol 69:1124–1130

    Article  Google Scholar 

  27. Zhao XJ, Rajapakse RKND (2009) Analytical solutions for a surface loaded isotropic elastic layer with surface energy effects. Int J Eng Sci 47:1433–1444

    Article  MathSciNet  MATH  Google Scholar 

  28. Fu Y, Zhang J, Jiang Y (2010) Influences of surface energies on the nonlinear static and dynamic behaviors of nanobeams. Physica E 42:2268–2273

    Article  ADS  Google Scholar 

  29. Ansari R, Sahmani S (2011) Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int J Eng Sci 49:1244–1255

    Article  Google Scholar 

  30. Ansari R, Sahmani S (2011) Surface stress effects on the free vibration behavior of nanoplates. Int J Eng Sci 49:1204–1215

    Article  MathSciNet  Google Scholar 

  31. Ansari R, Mohammadi V, Faghih Shojaei M, Gholami R, Sahmani S (2013) Postbuckling characteristics of nanobeams based on the surface elasticity theory. Compos B Eng 55:240–246

    Article  Google Scholar 

  32. Ansari R, Mohammadi V, Faghih Shojaei M, Gholami R, Sahmani S (2014) Postbuckling analysis of Timoshenko nanobeams including surface stress effect. Int J Eng Sci 75:1–10

    Article  Google Scholar 

  33. Ansari R, Gholami R, Faghih Shojaei M, Mohammadi V, Sahmani S (2014) Surface stress effect on the pull-in instability of circular nanoplates. Acta Astronaut 102:140–150

    Article  ADS  Google Scholar 

  34. Ansari R, Gholami R, Faghih Shojaei M, Mohammadi V, Sahmani S (2013) Surface stress effect on the vibrational response of circular nanoplates with various edge supports. ASME J Appl Mech 80:021021-1–021021-7

    Google Scholar 

  35. Sahmani S, Bahrami M, Ansari R (2014) Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams. Compos Struct 116:552–561

    Article  Google Scholar 

  36. Sahmani S, Bahrami M, Aghdam MM, Ansari R (2014) Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams. Compos Struct 118:149–158

    Article  Google Scholar 

  37. Sahmani S, Bahrami M, Ansari R (2014) Surface effects on the free vibration behavior of postbuckled circular higher-order shear deformable nanoplates including geometrical nonlinearity. Acta Astronaut 105:417–427

    Article  ADS  Google Scholar 

  38. Sahmani S, Aghdam MM, Bahrami M (2015) On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects. Compos Struct 121:377–385

    Article  Google Scholar 

  39. Sahmani S, Bahrami M, Aghdam MM (2015) Surface stress effects on the postbuckling behavior of geometrically imperfect cylindrical nanoshells subjected to combined axial and radial compressions. Int J Mech Sci 100:1–22

    Article  Google Scholar 

  40. Donnell LH (1976) Beam, plates and shells. McGraw-Hill, New York, pp 377–445

    Google Scholar 

  41. Shen H-S (2008) Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell. Part II: prediction under external pressure. Compos Struct 82:362–370

    Article  Google Scholar 

  42. Shen H-S (2009) Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium. Int J Mech Sci 51:372–383

    Article  Google Scholar 

  43. Shen H-S (2011) Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part II: Pressure-loaded shells. Compos Struct 93:2496–2503

    Article  Google Scholar 

  44. Shen H-S (2012) Postbuckling of functionally graded fiber reinforced composite laminated cylindrical shells. Part I: Theory and solutions. Compos Struct 94:1305–1321

    Article  Google Scholar 

  45. Shen H-S, Xiang Y (2014) Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Compos B Eng 67:50–61

    Article  Google Scholar 

  46. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147

    Article  ADS  Google Scholar 

  47. Zhu R, Pan E, Chung PW, Cai X, Liew KM, Buldum A (2006) Atomistic calculation of elastic moduli in strained silicon. Semicond Sci Technol 21:906–911

    Article  ADS  Google Scholar 

  48. Sahmani S, Aghdam MM, Bahrami M (2015) Nonlinear buckling and postbuckling behavior of cylindrical nanoshells subjected to combined axial and radial compressions incorporating surface stress effects. Compos B Eng 79:676–691

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sahmani.

Appendix

Appendix

The sets of perturbation equations for the regular solution are:

$$O\left( { \epsilon^{0} } \right):\left\{ {\begin{array}{l} { - \frac{{\partial^{2} \overline{F}_{0} }}{{\partial X^{2} }} = \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{F}_{0} } \right) + {\mathcal{Q}}_{0} } \hfill \\ {{\mathcal{L}}_{21} \left( {\overline{F}_{0} } \right) + 2\overline{\tau } {\mathcal{L}}_{22} \left( {\overline{W}_{0} } \right) + \frac{{\partial^{2} \overline{W}_{0} }}{{\partial X^{2} }} = - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{W}_{0} } \right) - \overline{\tau } \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{0} ,\overline{W}_{0} } \right) + \overline{\tau } \vartheta_{1} \widetilde{{\mathcal{L}}}_{3} (\overline{W}_{0} ,\overline{W}_{0} )} \hfill \\ {\quad + \frac{{\overline{\tau } \vartheta_{2} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} (\overline{W}_{0} ,\overline{W}_{0} )} \hfill \\ {0 = 0} \hfill \\ {0 = 0} \hfill \\ \end{array} } \right.$$
$$O\left( { \epsilon^{1/2} } \right):\left\{ {\begin{array}{l} { - \frac{{\partial^{2} \overline{F}_{1/2} }}{{\partial X^{2} }} = \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{F}_{0} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{F}_{1/2} } \right)} \hfill \\ {{\mathcal{L}}_{21} \left( {\overline{F}_{1/2} } \right) + 2\overline{\tau } {\mathcal{L}}_{22} \left( {\overline{W}_{1/2} } \right) + \frac{{\partial^{2} \overline{W}_{1/2} }}{{\partial X^{2} }} = - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{W}_{1/2} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{0} ,\overline{W}_{1/2} } \right)} \hfill \\ {\quad + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} (\overline{W}_{0} ,\overline{W}_{1/2} ) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} (\overline{W}_{0} ,\overline{W}_{1/2} )} \hfill \\ {{\mathcal{L}}_{32} \left( {\overline{\varPsi }_{{x_{1/2} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{y_{1/2} }} }}{\partial X\partial Y} = 0} \hfill \\ {{\mathcal{L}}_{42} \left( {\overline{\varPsi }_{{y_{1/2} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{x_{1/2} }} }}{\partial X\partial Y} = 0} \hfill \\ \end{array} } \right.$$
$$O\left( { \epsilon^{1} } \right):\left\{ {\begin{array}{l} { - \frac{{\partial^{2} \overline{F}_{1} }}{{\partial X^{2} }} = \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{F}_{1/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{F}_{0} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{F}_{1} } \right) + {\mathcal{Q}}_{1} } \\ {{\mathcal{L}}_{21} \left( {\overline{F}_{2} } \right) + 2\overline{\tau } {\mathcal{L}}_{22} \left( {\overline{W}_{2} } \right) + \frac{{\partial^{2} \overline{W}_{2} }}{{\partial X^{2} }} = - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{W}_{2} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{W}_{3/2} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{W}_{1} } \right)} \\ {\quad - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{1/2} ,\overline{W}_{1/2} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{0} ,\overline{W}_{1} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{1/2} ,\overline{W}_{1/2} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{0} ,\overline{W}_{1} } \right)} \\ {\quad + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{1/2} ,\overline{W}_{1/2} } \right)} \\ {{\mathcal{L}}_{31} \left( {\overline{W}_{0} } \right) + {\mathcal{L}}_{32} \left( {\overline{\varPsi }_{{x_{1} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{y_{1} }} }}{\partial X\partial Y} = 0} \\ {{\mathcal{L}}_{41} \left( {\overline{W}_{0} } \right) + {\mathcal{L}}_{42} \left( {\overline{\varPsi }_{{y_{1} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{x_{1} }} }}{\partial X\partial Y} = 0} \\ \end{array} } \right.$$
$$O\left( { \epsilon^{3/2} } \right):\left\{ \begin{array}{l} - \frac{{\partial^{2} \overline{F}_{3/2} }}{{\partial X^{2} }} + {\mathcal{L}}_{12} \left( {\overline{\varPsi }_{{x_{1/2} }} } \right) + {\mathcal{L}}_{13} \left( {\overline{\varPsi }_{{y_{1/2} }} } \right) = \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{F}_{3/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{F}_{1} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{F}_{1/2} } \right) \hfill \\ + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{3/2} ,\overline{F}_{0} } \right) \hfill \\ {\mathcal{L}}_{21} \left( {\overline{F}_{3/2} } \right) + 2\overline{\tau } {\mathcal{L}}_{22} \left( {\overline{W}_{3/2} } \right) + \frac{{\partial^{2} \overline{W}_{3/2} }}{{\partial X^{2} }} = - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{W}_{3/2} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{W}_{1} } \right) \hfill \\ - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{0} ,\overline{W}_{3/2} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{1/2} ,\overline{W}_{1} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{0} ,\overline{W}_{3/2} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{1/2} ,\overline{W}_{1} } \right) \hfill \\ + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{0} ,\overline{W}_{3/2} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{1/2} ,\overline{W}_{1} } \right) \hfill \\ {\mathcal{L}}_{31} \left( {\overline{W}_{1/2} } \right) + {\mathcal{L}}_{32} \left( {\overline{\varPsi }_{{x_{3/2} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{y_{3/2} }} }}{\partial X\partial Y} = 0 \hfill \\ {\mathcal{L}}_{41} \left( {\overline{W}_{1/2} } \right) + {\mathcal{L}}_{42} \left( {\overline{\varPsi }_{{y_{3/2} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{x_{3/2} }} }}{\partial X\partial Y} = 0 \hfill \\ \end{array} \right.$$
$$O\left( { \epsilon^{2} } \right):\left\{ \begin{array}{l} 2\overline{\tau } {\mathcal{L}}_{11} \left( {\overline{W}_{0} } \right) + {\mathcal{L}}_{12} \left( {\overline{\varPsi }_{{x_{1} }} } \right) + {\mathcal{L}}_{13} \left( {\overline{\varPsi }_{{y_{1} }} } \right) - \frac{{\partial^{2} \overline{F}_{2} }}{{\partial X^{2} }} = \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{F}_{2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{F}_{3/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{F}_{1} } \right) \hfill \\ + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{3/2} ,\overline{F}_{1/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{2} + W^{*} ,\overline{F}_{0} } \right) + {\mathcal{Q}}_{2} \hfill \\ {\mathcal{L}}_{21} \left( {\overline{F}_{2} } \right) + 2\overline{\tau } {\mathcal{L}}_{22} \left( {\overline{W}_{2} } \right) + \frac{{\partial^{2} \overline{W}_{2} }}{{\partial X^{2} }} = - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{W}_{2} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{W}_{3/2} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{W}_{1} } \right) \hfill \\ - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{0} ,\overline{W}_{2} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{1/2} ,\overline{W}_{3/2} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{1} ,\overline{W}_{1} } \right) \hfill \\ + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{0} ,\overline{W}_{2} + 2W^{*} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{1/2} ,\overline{W}_{3/2} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{1} ,\overline{W}_{1} } \right) \hfill \\ + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{0} ,\overline{W}_{2} + 2W^{*} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{1/2} ,\overline{W}_{3/2} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{1} ,\overline{W}_{1} } \right) \hfill \\ {\mathcal{L}}_{31} \left( {\overline{W}_{1} } \right) + {\mathcal{L}}_{32} \left( {\overline{\varPsi }_{{x_{2} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{y_{2} }} }}{\partial X\partial Y} = 0 \hfill \\ {\mathcal{L}}_{41} \left( {\overline{W}_{1} } \right) + {\mathcal{L}}_{42} \left( {\overline{\varPsi }_{{y_{2} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{x_{2} }} }}{\partial X\partial Y} = 0 \hfill \\ \end{array} \right.$$
$$O\left( { \epsilon^{5/2} } \right):\left\{ \begin{array}{l} 2\overline{\tau } {\mathcal{L}}_{12} \left( {\overline{W}_{1/2} } \right) + {\mathcal{L}}_{12} \left( {\overline{\varPsi }_{{x_{3/2} }} } \right) + {\mathcal{L}}_{13} \left( {\overline{\varPsi }_{{y_{3/2} }} } \right) - \frac{{\partial^{2} \overline{F}_{5/2} }}{{\partial X^{2} }} = \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{F}_{5/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{F}_{2} } \right) \hfill \\ + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{F}_{3/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{3/2} ,\overline{F}_{1} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{2} + W^{*} ,\overline{F}_{1/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{5/2} ,\overline{F}_{0} } \right) \hfill \\ {\mathcal{L}}_{21} \left( {\overline{F}_{5/2} } \right) + 2\overline{\tau } {\mathcal{L}}_{22} \left( {\overline{W}_{5/2} } \right) + \frac{{\partial^{2} \overline{W}_{5/2} }}{{\partial X^{2} }} = - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{W}_{5/2} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{W}_{2} + 2W^{*} } \right) \hfill \\ - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{W}_{3/2} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{0} ,\overline{W}_{5/2} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{1/2} ,\overline{W}_{2} + 2W^{*} } \right) \hfill \\ - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{1} ,\overline{W}_{3/2} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{0} ,\overline{W}_{5/2} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{1/2} ,\overline{W}_{2} + 2W^{*} } \right) \hfill \\ + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{1} ,\overline{W}_{3/2} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{0} ,\overline{W}_{5/2} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{1/2} ,\overline{W}_{2} + 2W^{*} } \right) \hfill \\ + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{1} ,\overline{W}_{3/2} } \right) \hfill \\ {\mathcal{L}}_{31} \left( {\overline{W}_{3/2} } \right) + {\mathcal{L}}_{32} \left( {\overline{\varPsi }_{{x_{5/2} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{y_{5/2} }} }}{\partial X\partial Y} = 0 \hfill \\ {\mathcal{L}}_{41} \left( {\overline{W}_{3/2} } \right) + {\mathcal{L}}_{42} \left( {\overline{\varPsi }_{{y_{5/2} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{x_{5/2} }} }}{\partial X\partial Y} = 0 \hfill \\ \end{array} \right.$$
$$O\left( { \epsilon^{3} } \right):\left\{ \begin{array}{l} 2\overline{\tau } {\mathcal{L}}_{12} \left( {\overline{W}_{1} } \right) + {\mathcal{L}}_{12} \left( {\overline{\varPsi }_{{x_{2} }} } \right) + {\mathcal{L}}_{13} \left( {\overline{\varPsi }_{{y_{2} }} } \right) - \frac{{\partial^{2} \overline{F}_{3} }}{{\partial X^{2} }} = \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{F}_{3} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{F}_{5/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{F}_{2} } \right) \hfill \\ + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{3/2} ,\overline{F}_{3/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{2} + W^{*} ,\overline{F}_{1} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{5/2} ,\overline{F}_{1/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{3} ,\overline{F}_{0} } \right) + {\mathcal{Q}}_{3} \hfill \\ {\mathcal{L}}_{21} \left( {\overline{F}_{3} } \right) + 2\overline{\tau } {\mathcal{L}}_{22} \left( {\overline{W}_{3} } \right) + \frac{{\partial^{2} \overline{W}_{3} }}{{\partial X^{2} }} = - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{W}_{3} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{W}_{5/2} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{W}_{2} + 2W^{*} } \right) \hfill \\ - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{3/2} ,\overline{W}_{3/2} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{0} ,\overline{W}_{3} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{1/2} ,\overline{W}_{5/2} } \right) \hfill \\ - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{1} ,\overline{W}_{2} + 2W^{*} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{3/2} ,\overline{W}_{3/2} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{0} ,\overline{W}_{3} } \right) \hfill \\ + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{1/2} ,\overline{W}_{5/2} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{1} ,\overline{W}_{2} + 2W^{*} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{3/2} ,\overline{W}_{3/2} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{0} ,\overline{W}_{3} } \right) \hfill \\ + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{1/2} ,\overline{W}_{5/2} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{1} ,\overline{W}_{2} + 2W^{*} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{3/2} ,\overline{W}_{3/2} } \right) \hfill \\ {\mathcal{L}}_{31} \left( {\overline{W}_{2} } \right) + {\mathcal{L}}_{32} \left( {\overline{\varPsi }_{{x_{3} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{y_{3} }} }}{\partial X\partial Y} = 0 \hfill \\ {\mathcal{L}}_{41} \left( {\overline{W}_{2} } \right) + {\mathcal{L}}_{42} \left( {\overline{\varPsi }_{{y_{3} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{x_{3} }} }}{\partial X\partial Y} = 0 \hfill \\ \end{array} \right.$$
$$O\left( { \epsilon^{7/2} } \right):\left\{ \begin{array}{l} 2\overline{\tau } {\mathcal{L}}_{12} \left( {\overline{W}_{3/2} } \right) + {\mathcal{L}}_{12} \left( {\overline{\varPsi }_{{x_{5/2} }} } \right) + {\mathcal{L}}_{13} \left( {\overline{\varPsi }_{{y_{5/2} }} } \right) - \frac{{\partial^{2} \overline{F}_{7/2} }}{{\partial X^{2} }} = \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{F}_{7/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{F}_{3} } \right) \hfill \\ + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{F}_{5/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{3/2} ,\overline{F}_{2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{2} + W^{*} ,\overline{F}_{3/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{5/2} ,\overline{F}_{1} } \right) \hfill \\ + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{3} ,\overline{F}_{1/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{7/2} ,\overline{F}_{0} } \right) \hfill \\ {\mathcal{L}}_{21} \left( {\overline{F}_{7/2} } \right) + 2\overline{\tau } {\mathcal{L}}_{22} \left( {\overline{W}_{7/2} } \right) + \frac{{\partial^{2} \overline{W}_{7/2} }}{{\partial X^{2} }} = - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{W}_{7/2} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{W}_{3} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{W}_{5/2} } \right) \hfill \\ - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{3/2} ,\overline{W}_{2} + 2W^{*} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{0} ,\overline{W}_{7/2} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{1/2} ,\overline{W}_{3} } \right) \hfill \\ - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{1} ,\overline{W}_{5/2} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{3/2} ,\overline{W}_{2} + 2W^{*} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{0} ,\overline{W}_{7/2} } \right) \hfill \\ + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{1/2} ,\overline{W}_{3} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{1} ,\overline{W}_{5/2} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{3/2} ,\overline{W}_{2} + 2W^{*} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{0} ,\overline{W}_{7/2} } \right) \hfill \\ + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{1/2} ,\overline{W}_{3} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{1} ,\overline{W}_{5/2} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{3/2} ,\overline{W}_{2} + 2W^{*} } \right) \hfill \\ {\mathcal{L}}_{31} \left( {\overline{W}_{5/2} } \right) + {\mathcal{L}}_{32} \left( {\overline{\varPsi }_{{x_{7/2} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{y_{7/2} }} }}{\partial X\partial Y} = 0 \hfill \\ {\mathcal{L}}_{41} \left( {\overline{W}_{5/2} } \right) + {\mathcal{L}}_{42} \left( {\overline{\varPsi }_{{y_{7/2} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{x_{7/2} }} }}{\partial X\partial Y} = 0 \hfill \\ \end{array} \right.$$
$$\begin{array}{l} O\left( { \epsilon^{4} } \right):\left\{ \begin{array}{l} 2\overline{\tau } {\mathcal{L}}_{12} \left( {\overline{W}_{2} } \right) + {\mathcal{L}}_{12} \left( {\overline{\varPsi }_{{x_{3} }} } \right) + {\mathcal{L}}_{13} \left( {\overline{\varPsi }_{{y_{3} }} } \right) - \frac{{\partial^{2} \overline{F}_{4} }}{{\partial X^{2} }} = \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{F}_{4} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{F}_{7/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{F}_{3} } \right) \hfill \\ + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{3/2} ,\overline{F}_{5/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{2} + W^{*} ,\overline{F}_{2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{5/2} ,\overline{F}_{3/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{3} ,\overline{F}_{1} } \right) \hfill \\ + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{7/2} ,\overline{F}_{1/2} } \right) + \beta^{2} \widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{4} ,\overline{F}_{0} } \right) + {\mathcal{Q}}_{4} \hfill \\ {\mathcal{L}}_{21} \left( {\overline{F}_{4} } \right) + 2\overline{\tau } {\mathcal{L}}_{22} \left( {\overline{W}_{4} } \right) + \frac{{\partial^{2} \overline{W}_{4} }}{{\partial X^{2} }} = - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{0} ,\overline{W}_{4} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1/2} ,\overline{W}_{7/2} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{1} ,\overline{W}_{3} } \right) \hfill \\ - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{3/2} ,\overline{W}_{5/2} } \right) - \frac{{\beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{1} \left( {\overline{W}_{2} ,\overline{W}_{2} + 2W^{*} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{0} ,\overline{W}_{4} } \right) \hfill \\ - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{1/2} ,\overline{W}_{7/2} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{1} ,\overline{W}_{3} } \right) - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{3/2} ,\overline{W}_{5/2} } \right) \hfill \\ - \overline{\tau } \vartheta_{1} \beta^{2} \widetilde{{\mathcal{L}}}_{2} \left( {\overline{W}_{2} ,\overline{W}_{2} + 2W^{*} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{0} ,\overline{W}_{4} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{1/2} ,\overline{W}_{7/2} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{1} ,\overline{W}_{3} } \right) \hfill \\ + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{3/2} ,\overline{W}_{5/2} } \right) + \overline{\tau } \vartheta_{2} \widetilde{{\mathcal{L}}}_{3} \left( {\overline{W}_{2} ,\overline{W}_{2} + 2W^{*} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{0} ,\overline{W}_{4} } \right) \hfill \\ + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{1/2} ,\overline{W}_{7/2} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{1} ,\overline{W}_{3} } \right) + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{3/2} ,\overline{W}_{5/2} } \right) \hfill \\ + \frac{{\overline{\tau } \vartheta_{3} \beta^{2} }}{2}\widetilde{{\mathcal{L}}}_{4} \left( {\overline{W}_{2} ,\overline{W}_{2} + 2W^{*} } \right) \hfill \\ {\mathcal{L}}_{31} \left( {\overline{W}_{3} } \right) + {\mathcal{L}}_{32} \left( {\overline{\varPsi }_{{x_{4} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{y_{4} }} }}{\partial X\partial Y} = 0 \hfill \\ {\mathcal{L}}_{41} \left( {\overline{W}_{3} } \right) + {\mathcal{L}}_{42} \left( {\overline{\varPsi }_{{y_{4} }} } \right) + \vartheta_{5} \beta \frac{{\partial^{2} \overline{\varPsi }_{{x_{4} }} }}{\partial X\partial Y} = 0 \hfill \\ \end{array} \right. \hfill \\ \hfill \\ \end{array}$$
(51)

The obtained asymptotic solution corresponding to radial dominated loading case is expressed as

$$\begin{aligned} W &= {\mathcal{A}}_{00}^{(0)} + \epsilon^{3/2} \hfill \\ & \quad \left[ {{\mathcal{A}}_{00}^{(3/2)} - {\mathcal{A}}_{00}^{(3/2)} \left( {\sin \left( {\frac{\alpha X}{\sqrt \epsilon}} \right) + { \cos }\left( {\frac{\alpha X}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{\alpha X}{\sqrt \epsilon}}} - {\mathcal{A}}_{00}^{(3/2)} \left( {\sin \left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right) + { \cos }\left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}}} } \right] \hfill \\ &\quad + \epsilon^{2} \left[ {{\mathcal{A}}_{00}^{(2)} + {\mathcal{A}}_{11}^{(2)} \sin \left( {mX} \right)\sin \left( {nY} \right) - {\mathcal{A}}_{00}^{(2)} \left( {\sin \left( {\frac{\alpha X}{\sqrt \epsilon}} \right) + { \cos }\left( {\frac{\alpha X}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{\alpha X}{\sqrt \epsilon}}} - {\mathcal{A}}_{00}^{(2)} \left( {\sin \left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right) + { \cos }\left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}}} } \right] \hfill \\ &\quad + \epsilon^{4} \left[ {{\mathcal{A}}_{00}^{(4)} + {\mathcal{A}}_{11}^{(4)} \sin \left( {mX} \right)\sin \left( {nY} \right) + {\mathcal{A}}_{20}^{(4)} \cos \left( {2mX} \right) + {\mathcal{A}}_{02}^{(4)} { \cos }(2nY) + {\mathcal{A}}_{22}^{(4)} \cos \left( {2mX} \right)\cos \left( {2nY} \right)} \right] + O\left( { \epsilon^{5} } \right) \hfill \\ \end{aligned}$$
(52)
$$\begin{aligned} F &= - {\mathcal{B}}_{00}^{(0)} \left( {\beta^{2} X^{2} + \left( {1 + C_{1} } \right)\frac{{Y^{2} }}{2}} \right) \hfill \\ &\quad + \epsilon^{2} \left[ { - {\mathcal{B}}_{00}^{(2)} \left( {\beta^{2} X^{2} + \left( {1 + C_{1} } \right)\frac{{Y^{2} }}{2}} \right) + {\mathcal{B}}_{11}^{(2)} \sin \left( {mX} \right)\sin \left( {nY} \right)} \right] \hfill \\ &\quad + \epsilon^{5/2} \left[ { + {\mathcal{A}}_{00}^{(3/2)} \left( {b_{10}^{(3/2)} \sin \left( {\frac{\alpha X}{\sqrt \epsilon}} \right) + b_{01}^{(3/2)} { \cos }\left( {\frac{\alpha X}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{\alpha X}{\sqrt \epsilon}}} + {\mathcal{A}}_{00}^{(3/2)} \left( {b_{10}^{(5/2)} \sin \left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right) + b_{01}^{(5/2)} { \cos }\left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}}} } \right] \hfill \\ &\quad + \epsilon^{3} \left[ {{\mathcal{A}}_{00}^{(2)} \left( {b_{10}^{(3)} \sin \left( {\frac{\alpha X}{\sqrt \epsilon}} \right) + b_{01}^{(3)} { \cos }\left( {\frac{\alpha X}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{\alpha X}{\sqrt \epsilon}}} + {\mathcal{A}}_{00}^{(2)} \left( {b_{10}^{(3)} \sin \left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right) + b_{01}^{(3)} { \cos }\left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}}} } \right] \hfill \\ &\quad + \epsilon^{4} \left[ { - {\mathcal{B}}_{00}^{\left( 4 \right)} \left( {\beta^{2} X^{2} + \left( {1 + C_{1} } \right)\frac{{Y^{2} }}{2}} \right) + {\mathcal{B}}_{20}^{(4)} \cos \left( {2mX} \right) + {\mathcal{B}}_{02}^{(4)} \cos \left( {2mY} \right) + {\mathcal{B}}_{22}^{(4)} \cos \left( {2mX} \right)\cos \left( {2nY} \right)} \right] + O\left( { \epsilon^{5} } \right) \hfill \\ \end{aligned}$$
(53)
$$\begin{aligned} \varPsi_{x} &= \epsilon^{2} \left[ {\left( {c_{10}^{(2)} \sin \left( {\frac{\alpha X}{\sqrt \epsilon}} \right) + c_{01}^{(2)} { \cos }\left( {\frac{\alpha X}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{\alpha X}{\sqrt \epsilon}}} + \left( {c_{10}^{(2)} \sin \left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right) + c_{01}^{(2)} { \cos }\left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}}} } \right] \hfill \\ &\quad + \epsilon^{3} \left[ {{\mathcal{C}}_{11}^{\left( 3 \right)} \cos \left( {mX} \right){ \sin }\left( {nY} \right)} \right] + O\left( { \epsilon^{5} } \right) \hfill \\ \end{aligned}$$
(54)
$$\varPsi_{y} = \epsilon^{3} \left[ {{\mathcal{D}}_{11}^{(3)} \sin \left( {mX} \right){ \cos }(nY)} \right] + + O\left( { \epsilon^{5} } \right)$$
(55)

The obtained asymptotic solution corresponding to axial dominated loading case is expressed as

$$\begin{aligned} W &= {\mathcal{A}}_{00}^{(0)} + \epsilon\left[ {{\mathcal{A}}_{00}^{(1)} - {\mathcal{A}}_{00}^{(1)} \left( {\sin \left( {\frac{\alpha X}{\sqrt \epsilon}} \right) + { \cos }\left( {\frac{\alpha X}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{\alpha X}{\sqrt \epsilon}}} - {\mathcal{A}}_{00}^{(1)} \left( {\sin \left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right) + { \cos }\left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}}} } \right] \hfill \\ &\quad + \epsilon^{2} \left[ {{\mathcal{A}}_{00}^{(2)} + {\mathcal{A}}_{11}^{(2)} \sin \left( {mX} \right)\sin \left( {nY} \right) + {\mathcal{A}}_{02}^{(2)} \cos \left( {2nY} \right) - \left( {{\mathcal{A}}_{00}^{(2)} + {\mathcal{A}}_{02}^{(2)} \cos \left( {2nY} \right)} \right)\left( {\sin \left( {\frac{\alpha X}{\sqrt \epsilon}} \right) + { \cos }\left( {\frac{\alpha X}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{\alpha X}{{\sqrt {\ominus \epsilon} }}}} } \right. \hfill \\ &\left. {\quad - \left( {{\mathcal{A}}_{00}^{(2)} + {\mathcal{A}}_{02}^{(2)} \cos \left( {2nY} \right)} \right)\left( {\sin \left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right) + { \cos }\left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}}} } \right] \hfill \\ &\quad + \epsilon^{4} \left[ {{\mathcal{A}}_{00}^{(4)} + {\mathcal{A}}_{11}^{(4)} \sin \left( {mX} \right)\sin \left( {nY} \right) + {\mathcal{A}}_{20}^{(4)} \cos \left( {2mX} \right) + {\mathcal{A}}_{02}^{(4)} { \cos }(2nY) + {\mathcal{A}}_{13}^{(4)} \sin \left( {mX} \right)\sin \left( {3nY} \right) } \right. \hfill \\ & \left. \quad+{{\mathcal{A}}_{22}^{(4)} \cos \left( {2mX} \right)\cos \left( {2nY} \right) + {\mathcal{A}}_{04}^{(4)} { \cos }(4nY)} \right] \hfill \\ &\quad+ O\left( { \epsilon^{5} } \right) \hfill \\ \end{aligned}$$
(56)
$$\begin{aligned} F &= - {\mathcal{B}}_{00}^{(0)} \left( {\frac{{C_{2} \beta^{2} X^{2} }}{{1 + C_{2} }} + \frac{{Y^{2} }}{2}} \right) + \epsilon^{2} \left[ - {\mathcal{B}}_{00}^{(2)} \left( {\frac{{C_{2} \beta^{2} X^{2} }}{{1 + C_{2} }} + \frac{{Y^{2} }}{2}} \right) + {\mathcal{B}}_{11}^{(2)} \sin \left( {mX} \right)\sin \left( {nY} \right) + {\mathcal{B}}_{02}^{(2)} \cos \left( {2nY} \right) + {\mathcal{A}}_{00}^{(1)} \left( {b_{10}^{(2)} \sin \left( {\frac{\alpha X}{\sqrt \epsilon}} \right) + b_{01}^{(2)} { \cos }\left( {\frac{\alpha X}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{\alpha X}{\sqrt \epsilon}}} + {\mathcal{A}}_{00}^{(1)} \left( {b_{10}^{(2)} \sin \left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right) + b_{01}^{(2)} { \cos }\left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}}} \right] \hfill \\ &\quad+ \epsilon^{3} \left[ {\left( {{\mathcal{A}}_{00}^{(2)} + {\mathcal{A}}_{02}^{(2)} \cos \left( {2nY} \right)} \right)\left( {b_{10}^{(3)} \sin \left( {\frac{\alpha X}{\sqrt \epsilon}} \right) + b_{01}^{(3)} { \cos }\left( {\frac{\alpha X}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{\alpha X}{\sqrt \epsilon}}} + \left( {{\mathcal{A}}_{00}^{(2)} + {\mathcal{A}}_{02}^{(2)} \cos \left( {2nY} \right)} \right)\left( {b_{10}^{(3)} \sin \left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right) + b_{01}^{(3)} { \cos }\left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right)} \right)e^{{ - \frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}}} } \right] \hfill \\ &\quad+ \epsilon^{4} \left[ { - {\mathcal{B}}_{00}^{(4)} \left( {\frac{{C_{2} \beta^{2} X^{2} }}{{1 + C_{2} }} + \frac{{Y^{2} }}{2}} \right) + {\mathcal{B}}_{20}^{(4)} \cos \left( {2mX} \right) + {\mathcal{B}}_{13}^{(4)} \sin \left( {mX} \right)\sin \left( {3nY} \right) + {\mathcal{B}}_{22}^{(4)} \cos \left( {2mX} \right)\cos \left( {2nY} \right)} \right] + O\left( { \epsilon^{5} } \right) \hfill \\ \end{aligned}$$
(57)
$$\begin{aligned} \varPsi_{x} = \epsilon^{3/2} \left[ {{\mathcal{A}}_{00}^{(1)} c_{10}^{(3/2)} \sin \left( {\frac{\alpha X}{\sqrt \epsilon}} \right)e^{{ - \frac{\alpha X}{\sqrt \epsilon}}} + {\mathcal{A}}_{00}^{(1)} c_{10}^{(3/2)} \sin \left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right)e^{{ - \frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}}} } \right] \hfill \\ &\quad+ \epsilon^{5/2} \left[ {\left( {{\mathcal{A}}_{00}^{(2)} + {\mathcal{A}}_{02}^{(2)} \cos \left( {2nY} \right)} \right)c_{10}^{(5/2)} \sin \left( {\frac{\alpha X}{\sqrt \epsilon}} \right)e^{{ - \frac{\alpha X}{\sqrt \epsilon}}} + \left( {{\mathcal{A}}_{00}^{(2)} + {\mathcal{A}}_{02}^{(2)} \cos \left( {2nY} \right)} \right)c_{10}^{(5/2)} \sin \left( {\frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}} \right)e^{{ - \frac{{\alpha \left( {\pi - X} \right)}}{\sqrt \epsilon}}} } \right] \hfill \\ &\quad+ \epsilon^{3} \left[ {{\mathcal{C}}_{11}^{(3)} \cos \left( {mX} \right){ \sin }\left( {nY} \right)} \right] + O\left( { \epsilon^{5} } \right) \hfill \\ \end{aligned}$$
(58)
$$\varPsi_{y} = \epsilon^{3} \left[ {{\mathcal{D}}_{11}^{(3)} \sin \left( {mX} \right){ \cos }(nY) + {\mathcal{D}}_{02}^{\left( 3 \right)} { \sin }(2nY)} \right] + O\left( { \epsilon^{5} } \right)$$
(59)

in which

$$\alpha = \sqrt {\frac{a}{2}} ,\quad a = \sqrt {\frac{{1 - 2\overline{\tau } \vartheta_{1} }}{{\vartheta_{1} \left( {d_{11}^{*} - e_{11}^{*} } \right)}}}$$

In the radial dominated loading case, the periodicity condition yields

$${\mathcal{A}}_{00}^{(0)} = 0$$
(60)
$${\mathcal{A}}_{00}^{(3/2)} = \frac{2}{3}3^{1/4} {\mathcal{P}}_{q} \left( {1 + C_{1} } \right)\left( {\frac{{2\vartheta_{1} - \vartheta_{2} }}{{1 - 2\overline{\tau } \vartheta_{1} }}} \right) + \frac{{2\overline{\tau } \vartheta_{6} \left( {\vartheta_{1} - \vartheta_{2} } \right)}}{{1 - 2\overline{\tau } \vartheta_{1} }} \epsilon^{ - 1/2}$$
(61)
$${\mathcal{A}}_{00}^{(2)} = 0$$
(62)
$${\mathcal{A}}_{00}^{(4)} = \frac{{2\overline{\tau } \vartheta_{2} m^{2} + \beta^{2} n^{2} \left( {1 - 2\overline{\tau } \vartheta_{1} } \right)\left( {1 + 2\ell } \right)}}{{8\left( {1 - 2\overline{\tau } \vartheta_{1} } \right)}}\left( {{\mathcal{A}}_{11}^{\left( 2 \right)} } \right)^{2}$$
(63)

In the axial dominated loading case, the periodicity condition yields

$${\mathcal{A}}_{00}^{(0)} = 0$$
(64)
$${\mathcal{A}}_{00}^{(1)} = \frac{{2{\mathcal{P}}_{x} \left( {2C_{2} \vartheta_{1} - \left( {1 + C_{2} } \right)\vartheta_{2} } \right)}}{{\left( {1 - 2\overline{\tau } \vartheta_{1} } \right)}} + \frac{{2\overline{\tau } \vartheta_{6} \left( {\vartheta_{1} - \vartheta_{2} } \right)}}{{1 - 2\overline{\tau } \vartheta_{1} }} \epsilon^{ - 1/2}$$
(65)
$${\mathcal{A}}_{00}^{(2)} = 0$$
(66)
$${\mathcal{A}}_{00}^{(4)} = \frac{{2\overline{\tau } \vartheta_{2} m^{2} + \beta^{2} n^{2} \left( {1 - 2\overline{\tau } \vartheta_{1} } \right)\left( {1 + 2\ell } \right)}}{{8\left( {1 - 2\overline{\tau } \vartheta_{1} } \right)}}\left( {{\mathcal{A}}_{11}^{\left( 2 \right)} } \right)^{2} + \beta^{2} n^{2} \left( {{\mathcal{A}}_{02}^{\left( 2 \right)} } \right)^{2}$$
(67)

The parameters in Eqs. (4050) can be obtained as follow

$${\mathcal{P}}_{q}^{(0)} = K_{0} K_{1} + \epsilon^{2} \beta^{2} K_{4}$$
(68)
$$\begin{aligned} {\mathcal{P}}_{q}^{(2)} &= 8K_{1} K_{9} K_{14} + \frac{{8K_{1} K_{9} \left( {K_{0} K_{1} K_{13} \beta^{2} \left( {1 + C_{1} } \right) + K_{0} K_{9} K_{12} } \right)}}{{K_{0} K_{1} \beta^{2} \left( {1 + C_{1} } \right) - K_{12} }} + \frac{{4K_{1} K_{9} \left( {K_{0} K_{13} + K_{0}^{2} K_{9} } \right)}}{{K_{0} K_{1} \beta^{2} \left( {1 + C_{1} } \right) - K_{12} }} \hfill \\ &\quad + 16K_{0} K_{9} K_{10} + \frac{{4K_{0} K_{1} K_{9} K_{16} }}{{K_{0} K_{11} + K_{15} }} \hfill \\ \end{aligned}$$
(69)
$$\begin{aligned} \delta_{q}^{(0)} & = \left[ {\frac{{3^{3/4} }}{2}\overline{\tau } \vartheta_{6} \left( {\vartheta_{1} - \vartheta_{2} } \right)} \right] \epsilon^{ - 1/2} + \left[ {\frac{{\vartheta_{1} }}{2} - \vartheta_{2} - \overline{\tau } \vartheta_{2} \left( {\frac{{2\vartheta_{1} - \vartheta_{2} }}{{1 - 2\overline{\tau } \vartheta_{1} }}} \right) + \left( {\frac{{2\vartheta_{1} \vartheta_{2} - \vartheta_{2}^{2} }}{{\pi \alpha \vartheta_{1} \left( {1 - 2\overline{\tau } \vartheta_{1} } \right)}}} \right) \epsilon^{1/2} } \right]{\mathcal{P}}_{q} \left( {1 + C_{1} } \right) \\ & \quad + \left[ {\left( {\frac{{3^{1/4} \alpha \left( {2\vartheta_{1} - \vartheta_{2} } \right)^{2} }}{{6\pi \left( {1 - 2\overline{\tau } \vartheta_{1} } \right)}}} \right) \epsilon} \right]{\mathcal{P}}_{q}^{2} \left( {1 + C_{1} } \right)^{2} \\ \end{aligned}$$
(70)
$$\delta_{q}^{(2)} = \left[ {\frac{{3^{3/4} }}{32}\left( {\left( {m^{2} \left( {1 - 2\overline{\tau } \vartheta_{1} } \right) + 2\overline{\tau } \vartheta_{2} \beta^{2} n^{2} } \right) - \frac{{4\overline{\tau }^{2} \vartheta_{2}^{2} m^{2} + 2\overline{\tau } \vartheta_{2} \beta^{2} n^{2} \left( {1 - 2\overline{\tau } \vartheta_{1} } \right)}}{{1 - 2\overline{\tau } \vartheta_{1} }}} \right)} \right] \epsilon^{ - 3/2}$$
(71)

where \(K_{i} (i = 0, \ldots ,17)\) are the parameters in terms of \(\vartheta_{1} ,\vartheta_{2} ,\vartheta_{3} , \vartheta_{4} , \vartheta_{5} ,m, n, \beta , \ell ,C_{1}\) obtained via the sets of perturbation equations.

$${\mathcal{S}}_{1} = - \left[ {\left( {\frac{{2\vartheta_{1} - \vartheta_{2} \left( {1 + C_{1} } \right)}}{{1 - 2\overline{\tau } \vartheta_{1} }}} \right)\left( {{\mathcal{P}}_{q}^{\left( 2 \right)} } \right)} \right]$$
(72)
$${\mathcal{S}}_{2} = - \left( {\frac{{2\vartheta_{1} - \vartheta_{2} \left( {1 + C_{1} } \right)}}{{1 - 2\overline{\tau } \vartheta_{1} }}} \right)\left( {{\mathcal{P}}_{q}^{\left( 0 \right)} } \right) - \frac{{2\overline{\tau } \vartheta_{6} \left( {\vartheta_{1} - \vartheta_{2} } \right)}}{{1 - 2\overline{\tau } \vartheta_{1} }}$$
(73)
$${\mathcal{P}}_{x}^{\left( 0 \right)} = \frac{1}{2}\left\{ {K_{0} \widehat{K}_{1} + \epsilon^{2} \left( {\frac{{K_{9} - K_{3} K_{5} K_{9} + K_{2} K_{5} K_{10} - K_{4} K_{10} + K_{3} K_{4} K_{11} - K_{2} K_{11} }}{{1 - K_{3} K_{5} }}} \right)} \right\} \epsilon^{ - 1}$$
(74)
$${\mathcal{P}}_{x}^{\left( 2 \right)} = \frac{1}{2}\left\{ {\left( {\frac{{2K_{0} K_{22} \left( {K_{0} + K_{1} } \right)\left( {K_{15} + K_{16} } \right)\widehat{K}_{1} + 4K_{0} K_{17} \widehat{K}_{1} }}{{\left( {K_{7} - K_{6} K_{8} } \right)\left( {K_{15} + K_{16} } \right)}}} \right) \epsilon^{ - 1} + \left( {2K_{14} K_{22} \widehat{K}_{1} + \frac{{K_{0} K_{12} K_{22}^{2} \widehat{K}_{1} + 4K_{0} K_{13} K_{22} \widehat{K}_{1}^{2} }}{{2\left( {K_{0} \widehat{K}_{1} - K_{12} } \right)}} + \frac{{K_{0}^{2} K_{22}^{2} \widehat{K}_{1} + 4K_{0} K_{13} K_{22} \widehat{K}_{1} }}{{2\left( {K_{0} \widehat{K}_{1} - K_{12} } \right)}} + \frac{{K_{0}^{2} K_{22} \widehat{K}_{1} + 4K_{0} K_{13} \widehat{K}_{1} }}{{2\left( {K_{0} \widehat{K}_{1} - K_{12} } \right)\left( {K_{15} + K_{16} } \right)}} + \frac{{K_{0} K_{21} \widehat{K}_{3} }}{{K_{0} K_{20} \left( {K_{15} + K_{16} } \right)\widehat{K}_{1} - 4\left( {K_{15} + K_{16} } \right)^{2} }}} \right) \epsilon} \right\}$$
(75)
$${\mathcal{P}}_{x}^{\left( 4 \right)} = \frac{1}{2}\left\{ {\left( {\frac{{4K_{0} K_{18} K_{22} n^{2} \left( {K_{0} + K_{1} } \right)\widehat{K}_{1} \left( {2\widehat{K}_{1} + \widehat{K}_{2} } \right) + 8K_{0}^{2} K_{19} n^{2} \widehat{K}_{1} \left( {\widehat{K}_{2} - 1} \right)}}{{\left( {K_{7} - K_{6} K_{8} } \right)\left( {K_{0} \widehat{K}_{1} - K_{18} } \right)}} + \left( {\frac{{4K_{0} K_{17} \widehat{K}_{1} \widehat{K}_{2} }}{{\left( {K_{7} - K_{6} K_{8} } \right)\left( {K_{15} + K_{16} } \right)}}} \right)\left( {\frac{{2K_{0} K_{22} \left( {K_{0} + K_{1} } \right)\left( {K_{15} + K_{16} } \right) + 4K_{0} K_{17} }}{{\left( {K_{7} - K_{6} K_{8} } \right)\left( {K_{15} + K_{16} } \right)}}} \right) - \frac{{8K_{0}^{3} K_{17} \widehat{K}_{1} \widehat{K}_{2} }}{{\left( {K_{7} - K_{6} K_{8} } \right)^{2} \left( {K_{15} + K_{16} } \right)^{2} }} + \frac{{4K_{0}^{3} K_{22} \left( {K_{0} + K_{1} } \right)\widehat{K}_{1} + 8K_{0}^{3} K_{19} \widehat{K}_{1} }}{{\left( {K_{7} - K_{6} K_{8} } \right)^{2} \left( {K_{0} \widehat{K}_{1} - K_{18} } \right)\left( {K_{15} + K_{16} } \right)}}} \right) \epsilon^{ - 1} } \right\}$$
(76)
$$\begin{aligned} \delta_{x}^{(0)} = \overline{\tau } \vartheta_{6} \left( {\vartheta_{1} - \vartheta_{2} } \right) + {\mathcal{P}}_{x} \left( {\vartheta_{1} \left( {1 + C_{2} } \right) - - 2\vartheta_{2} C_{2} + \frac{{2\overline{\tau } \vartheta_{2} \left( {2C_{2} \vartheta_{1} - \left( {1 + C_{2} } \right)\vartheta_{2} } \right)}}{{1 - 2\overline{\tau } \vartheta_{1} }}} \right) \hfill \\ + \left( {\frac{{\varGamma \left( {2\vartheta_{1} C_{2} - \vartheta_{2} \left( {1 + C_{2} } \right)} \right)^{2} {\mathcal{P}}_{x}^{2} }}{{\pi \left( {1 - 2\overline{\tau } \vartheta_{1} } \right)}} + \frac{{2\vartheta_{2} \left( {2\vartheta_{1} C_{2} - \vartheta_{2} (1 + C_{2} )} \right){\mathcal{P}}_{x} }}{{\pi \alpha \vartheta_{1} \left( {1 - 2\overline{\tau } \vartheta_{1} } \right)}} + \frac{{2\overline{\tau } \vartheta_{2} \left( {2\vartheta_{1} C_{2} - \vartheta_{2} (1 + C_{2} )} \right){\mathcal{P}}_{x} }}{{\pi \alpha \left( {1 - 2\overline{\tau } \vartheta_{1} } \right)}}} \right) \epsilon^{1/2} \hfill \\ \end{aligned}$$
(77)
$$\delta_{x}^{(2)} = \left[ {\frac{{\left( {1 - 2\overline{\tau } \vartheta_{1} } \right)m^{2} }}{16} + \frac{{\overline{\tau } \vartheta_{2} \beta^{2} n^{2} }}{8} - \frac{{2\overline{\tau }^{2} \vartheta_{2}^{2} m^{2} + \overline{\tau } \vartheta_{2} \beta^{2} n^{2} \left( {1 - 2\overline{\tau } \vartheta_{1} } \right)}}{{8\left( {1 - 2\overline{\tau } \vartheta_{1} } \right)}}} \right] \epsilon$$
(78)
$$\begin{aligned} \delta_{x}^{(4)} & = \left[ {\frac{{\varGamma K_{0}^{2} \left( {1 - 2\overline{\tau } \vartheta_{1} } \right)}}{{8\pi^{2} \left( {K_{7} - K_{6} K_{8} } \right)^{2} }}} \right] \epsilon^{ - 3/2} + \left[ {\frac{{\overline{\tau } \vartheta_{2} K_{0}^{2} K_{22} }}{{\left( {K_{7} - K_{6} K_{8} } \right)^{2} }}} \right] \epsilon^{ - 1} \\ & \quad + \left[ {\left( {\frac{{\left( {1 - 2\overline{\tau } \vartheta_{1} } \right)m^{2} + 2\overline{\tau } \vartheta_{2} \beta^{2} n^{2} }}{4}} \right)\left( {\frac{{K_{21} \widehat{K}_{3} }}{{K_{0} K_{20} \widehat{K}_{1} - 4\left( {K_{15} + K_{16} } \right)}}} \right)^{2} + \left( {\frac{{\left( {1 - 2\overline{\tau } \vartheta_{1} } \right)m^{2} }}{2}} \right)\left( {\frac{{K_{0} K_{22} + 4K_{13} }}{{4\left( {K_{0} \widehat{K}_{1} - K_{12} } \right)}}} \right)^{2} } \right] \epsilon^{3} \\ \end{aligned}$$
(79)

where \(K_{i} (i = 0, \ldots ,22)\) are the parameters in terms of \(\vartheta_{1} ,\vartheta_{2} ,\vartheta_{3} , \vartheta_{4} , \vartheta_{5} ,m, n, \beta ,\text{ }\ell ,C_{2}\) obtained via the sets of perturbation equations.

$${\mathcal{S}}_{3} = - \frac{{K_{0} }}{{K_{7} + K_{6} K_{8} }} \epsilon^{ - 1} - \left( {\frac{{2C_{2} \vartheta_{1} - \left( {1 + C_{2} } \right)\vartheta_{2} }}{{1 - 2\overline{\tau } \vartheta_{1} }}} \right)\left( {2{\mathcal{P}}_{x}^{\left( 2 \right)} } \right)$$
(80)
$${\mathcal{S}}_{4} = - \left( {\frac{{2C_{2} \vartheta_{1} - \left( {1 + C_{2} } \right)\vartheta_{2} }}{{1 - 2\overline{\tau } \vartheta_{1} }}} \right)\left( {2{\mathcal{P}}_{x}^{\left( 0 \right)} } \right) - \left( {\frac{{2\overline{\tau } \vartheta_{6} \left( {\vartheta_{1} - \vartheta_{2} } \right)}}{{1 - 2\overline{\tau } \vartheta_{1} }}} \right) \epsilon^{ - 1}$$
(81)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahmani, S., Aghdam, M.M. & Bahrami, M. Surface free energy effects on the postbuckling behavior of cylindrical shear deformable nanoshells under combined axial and radial compressions. Meccanica 52, 1329–1352 (2017). https://doi.org/10.1007/s11012-016-0465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0465-4

Keywords

Navigation