Skip to main content
Log in

Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The stability of natural convection in a fluid-saturated vertical anisotropic porous layer is investigated. The vertical rigid walls of the porous layer are maintained at different constant temperatures, and anisotropy in both permeability and thermal diffusivity is considered. The flow in the porous medium is described by the Lapwood–Brinkman model, and the stability of the basic flow is analysed numerically using Chebyshev collocation method. The presence of inertia is to inflict instability on the system and in the absence of which the system is always found to be stable. The mechanical and thermal anisotropies exhibit opposing contributions on the stability characteristics of the system. The mode of instability is interdependent on the values of Prandtl number and thermal anisotropy parameter, while it remains unaltered with the mechanical anisotropy parameter. The effect of increasing Prandtl and Darcy numbers shows a destabilizing effect on the system. Besides, simulations of secondary flow and energy spectrum have been analysed for various values of physical parameters at the critical state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Vertical wave number

c :

Wave speed

\(c_\mathrm{r}\) :

Phase velocity

\(c_i \) :

Growth rate

Da :

Darcy number

\(E_\mathrm{b} , E_\mathrm{d} , E_\mathrm{D} , E_\mathrm{s}\) :

Disturbance kinetic energies

\(\vec {g}\) :

Acceleration due to gravity

G :

Grashof number

h :

Half-width of the porous layer

\(\hat{{i}}\) :

Unit vector in x-direction

\(\hat{{k}}\) :

Unit vector in z-direction

\(\underset{{\thicksim }}{K}\) :

Second-order permeability tensor

\({K}_{x}\) :

Transverse component of the permeability

\(K_z\) :

Longitudinal component of the permeability

\(K_1\) :

Mechanical anisotropy parameter

p :

Pressure

Pr :

Prandtl number

\(\vec {q}=(u,v,w)\) :

Velocity vector

t :

Time

T :

Temperature

\(T_\mathrm{c}, T_\mathrm{d}\) :

Disturbance thermal energies

\(T_1\) :

Temperature of the left boundary

\(T_2\) :

Temperature of the right boundary

\(W_\mathrm{b}\) :

Basic velocity

\(\left( {x,y,z} \right) \) :

Cartesian co-ordinates

\(\alpha \) :

Volumetric thermal expansion coefficient

\(\beta \) :

Temperature gradient

\(\chi \) :

Ratio of heat capacities

\(\varphi _\mathrm{p}\) :

Porosity of the porous medium

\(\underset{{\thicksim }}{\kappa }\) :

Thermal diffusivity tensor

\(\kappa _x \) :

Transverse component of the thermal diffusivity

\(\kappa _z \) :

Longitudinal component of the thermal diffusivity

\(\kappa _1 \) :

Thermal anisotropy parameter

\(\mu \) :

Fluid viscosity

\(\mu _\mathrm{e} \) :

Effective fluid viscosity

\(\nu \) :

Kinematic viscosity

\(\theta \) :

Amplitude of perturbed temperature

\(\rho \) :

Fluid density

\(\rho _0 \) :

Reference density at \(T_0 \)

\(\psi \) :

Stream function

\(\Psi \) :

Amplitude of vertical component of perturbed velocity

References

  1. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2013)

    Book  MATH  Google Scholar 

  2. Straughan, B.: The Energy Method, Stability, and Nonlinear Convection. Springer, New York (2004)

    Book  MATH  Google Scholar 

  3. Straughan, B.: Stability and Wave Motion in Porous Media, vol. 165. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  4. Turcotte, D.L., Schubert, G.: Geodynamics, 3rd edn. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  5. Castinel, G., Combarnous, M.: Natural convection in an anisotropic porous layer. Int. Chem. Eng. 17, 605–613 (1977)

    Google Scholar 

  6. Epherre, J.F.: Criterion for the appearance of natural convection in an anisotropic porous layer. Int. Chem. Eng. 17, 615–616 (1977)

    Google Scholar 

  7. McKibbin, R., Tyvand, P.A.: Anisotropic modelling of thermal convection in multilayered porous media. J. Fluid Mech. 118, 315–339 (1982)

    Article  MATH  Google Scholar 

  8. Tyvand, P.A., Storesletten, L.: Onset of convection in an anisotropic porous medium with oblique principal axis. J. Fluid Mech. 226, 371–382 (1991)

    Article  MATH  Google Scholar 

  9. Straughan, B., Walker, D.W.: Anisotropic porous penetrative convection. Proc. R. Soc. Lond. A 452, 97–115 (1996)

    Article  MATH  Google Scholar 

  10. Payne, L.E., Rodrigues, J.F., Straughan, B.: Effect of anisotropic permeability on Darcy’s law. Math. Methods Appl. Sci. 24, 427–438 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rees, D.A.S., Postelnicu, A.: The onset of convection in an inclined anisotropic porous layer. Int. J. Heat Mass Transf. 44, 4127–4138 (2001)

    Article  MATH  Google Scholar 

  12. Khalili, A., Shivakumara, I.S., Huettel, M.: Effects of throughflow and internal heat generation on convective instabilities in an anisotropic porous layer. J. Porous Med. 5, 187–198 (2002)

    Article  MATH  Google Scholar 

  13. Storesletten, L.: Effects of anisotropy on convection in horizontal and inclined porous layers. Emerg. Tech. Techn. Por. Med., pp. 285–306. Kluwer Academic, Dordrecht (2004)

  14. Capone, F., Gentile, M., Hill, A.A.: Anisotropy and symmetry in porous media convection. Acta Mech. 208, 205–214 (2009)

    Article  MATH  Google Scholar 

  15. Capone, F., Gentile, M., Hill, A.A.: Penetrative convection in anisotropic porous media with variable permeability. Acta Mech. 216, 49–58 (2011)

    Article  MATH  Google Scholar 

  16. Capone, F., Gentile, M., Hill, A.A.: Convection problems in anisotropic porous media with nonhomogeneous porosity and thermal diffusivity. Acta Appl. Math. 122, 85–91 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Shiina, Y., Hishida, M.: Critical Rayleigh number of natural convection in high porosity anisotropic horizontal porous layers. Int. J. Heat Mass Transf. 53, 1507–1513 (2010)

    Article  MATH  Google Scholar 

  18. Haddad, S.A.M.: Thermal convection in a Darcy porous medium with anisotropic spatially varying permeability. Acta Appl. Math. 132, 359–370 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Burns, P.J., Chow, L.C., Tien, C.L.: Convection in a vertical slot filled with porous insulation. Int. J. Heat Mass Transf. 20, 919–926 (1977)

    Article  Google Scholar 

  20. Poulikakos, D., Bejan, A.: Natural convection in vertically and horizontally layered porous media heated from the side. Int. J. Heat Mass Transf. 26, 1805–1814 (1983)

    Article  MATH  Google Scholar 

  21. Lai, F.C., Kulacki, F.A.: Natural convection across a vertical layered porous cavity. Int. J. Heat Mass Transf. 31, 1247–1260 (1988)

    Article  Google Scholar 

  22. Ni, J., Beckermann, C.: Natural convection in a vertical enclosure filled with anisotropic porous media. J. Heat Transf. 113, 1033–1037 (1993)

    Article  Google Scholar 

  23. Degan, G., Vasseur, P., Bilgen, E.: Convective heat transfer in a vertical anisotropic porous layer. Int. J. Heat Mass Transf. 38, 1975–1987 (1995)

    Article  MATH  Google Scholar 

  24. Degan, G., Vasseur, P.: Aiding mixed convection through a vertical anisotropic porous channel with oblique principal axes. Int. J. Eng. Sci. 40, 193–209 (2002)

    Article  Google Scholar 

  25. Gill, A.E.: A proof that convection in a porous vertical slab is stable. J. Fluid Mech. 35, 545–547 (1969)

    Article  MATH  Google Scholar 

  26. Hong, J.T., Tien, C.L., Kaviany, M.: Non-Darcian effects on vertical plate natural convection in porous media with high porosities. Int. J. Heat Mass Transf. 28, 2149–2157 (1985)

    Article  Google Scholar 

  27. Kwok, L.P., Chen, C.F.: Stability of thermal convection in a vertical porous layer. J. Heat Transf. 109, 889–893 (1987)

    Article  Google Scholar 

  28. Qin, Y., Kaloni, P.N.: A nonlinear stability problem of convection in a porous vertical slab. Phys. Fluids A 5, 2067–2069 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shankar, B.M., Kumar, J., Shivakumara, I.S.: Effect of horizontal alternating current electric field on the stability of natural convection in a dielectric fluid saturated vertical porous layer. J. Heat Transf. 137, 042501-1–042501-9 (2015)

    Article  Google Scholar 

  30. Shankar B.M., Kumar, J., Shivakumara, I.S. (2016) Stability of natural convection in a vertical layer of Brinkman porous medium. Acta Mech. doi:10.1007/s00707-016-1690-6

  31. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  32. Shankar, B.M., Kumar, J., Shivakumara, I.S.: Stability of natural convection in a vertical couple stress fluid layer. Int. J. Heat Mass Transf. 78, 447–459 (2014)

    Article  Google Scholar 

  33. Su, Y.C., Chung, J.N.: Linear stability analysis of mixed-convection flow in a vertical pipe. J. Fluid Mech. 422, 141–166 (2000)

    Article  MATH  Google Scholar 

  34. McBain, G.D., Armfield, S.W.: Natural convection in a vertical slot: accurate solution of the linear stability equations. ANZIAM J. 45, 92–105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Shankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, B.M., Kumar, J. & Shivakumara, I.S. Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium. Acta Mech 228, 2269–2282 (2017). https://doi.org/10.1007/s00707-017-1831-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1831-6

Navigation