Skip to main content

Advertisement

Log in

Monolithic modeling and finite element analysis of piezoelectric energy harvesters

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper is devoted to monolithic modeling of piezoelectric energy harvesting devices. From a modeling perspective, piezoelectric energy harvesting is a strongly coupled phenomenon with two-way coupling between the electromechanical effect of the piezoelectric material and the harvesting circuit. Even in applications related to shunt damping, where the attached electrical circuit is passive, accurate modeling of the strong coupling is crucial for proper evaluation of the relevant parameters. The article proposes a monolithic mixed-hybrid finite element formulation for the predictive modeling and simulation of piezoelectric energy harvesting devices. The governing equations of the coupled electromechanical problem are converted into a single integral form with six independent unknown fields. Such a holistic approach provides consistent solution to the coupled field equations which involve structural dynamics, electromechanical effect of the piezoelectric patches and the dynamics of the attached harvesting circuit. This allows accurate computation of the eigenvalues and corresponding mode shapes of a harvester for any finite resistive load coupled to the harvester. The fully three-dimensional mixed-hybrid formulation is capable of analyzing structures with non-uniform geometry and varying material properties. The results of the finite element model are verified against the analytical results of a bimorph harvester with tip mass reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelkefi, A., Najar, F., Nayfeh, A.H., Ayed, S.B.: An energy Harvester using piezoelectric cantilever beams undergoing coupled bendingtorsion vibrations. Smart Mater. Struct. 20(11), 115007 (2011)

    Article  Google Scholar 

  2. Allik, H., Hughes, T.J.R.: Finite element method for piezoelectric vibration. Int. J. Numer. Meth. Eng. 2(2), 151–157 (1970)

    Article  Google Scholar 

  3. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16(3), R1 (2007)

    Article  Google Scholar 

  4. Becker, J., Fein, O., Maess, M., Gaul, L.: Finite element-based analysis of shunted piezoelectric structures for vibration damping. Comput. Struct. 84(31–32), 2340–2350 (2006)

    Article  Google Scholar 

  5. Benjeddou, A.: Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. Struct. 76(13), 347–363 (2000)

    Article  Google Scholar 

  6. Chen, S.-N., Wang, G.-J., Chien, M.-C.: Analytical modeling of piezoelectric vibration-induced micro power generator. Mechatronics 16(7), 379–387 (2006)

    Article  Google Scholar 

  7. Dutoit, N.E., Wardle, B.L., Kim, S.-G.: Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 71, 121–160 (2005)

    Article  Google Scholar 

  8. Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. Intel. Mater. Syst. Struct. 19, 1311–1325 (2008)

    Article  Google Scholar 

  9. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 1–18 (2009)

    Article  Google Scholar 

  10. Erturk, A., Vieira, W.G.R., De Marqui, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96(18), 184103-1–184103-3 (2010)

  11. Ghandi, K., Hagood, N.W.: Hybrid finite element model for phase transitions in nonlinear electromechanically coupled material. In: Varadan, V.V., Chandra, J. (eds.), Smart Structures and Materials 1997: Mathematics and Control in Smart Structures, vol. 3039 of Proc. Spie, pp 97–112 (1997)

  12. Klinkel, S., Wagner, W.: A geometrically non-linear piezoelectric solid shell element based on a mixed multi-field variational formulation. Int. J. Numer. Meth. Eng. 65(3), 349–382 (2006)

    Article  MATH  Google Scholar 

  13. Klinkel, S., Gruttmann, F., Wagner, W.: A robust non-linear solid shell element based on a mixed variational formulation. Comput. Methods Appl. Mech. Eng. 195(13), 179–201 (2006)

    Article  MATH  Google Scholar 

  14. Lu, F., Lee, H.P., Lim, S.P.: Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater. Struct. 13(1), 57 (2004)

    Article  Google Scholar 

  15. Ravi, S., Zilian, A.: Numerical Modeling of Flow-Driven Piezoelectric Energy Harvesting Devices, pp. 399–426. Springer International Publishing, Cham (2016)

  16. Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13(5), 1131 (2004)

    Article  Google Scholar 

  17. Sodano, H.A., Park, G., Inman, D.J.: Estimation of electric charge output for piezoelectric energy harvesting. Strain 40, 49–58 (2004)

    Article  Google Scholar 

  18. Sze, K.Y., Ghali, A.: Hybrid hexahedral element for solids, plates, shells and beams by selective scaling. Int. J. Numer. Meth. Eng. 36(9), 1519–1540 (1993)

    Article  MATH  Google Scholar 

  19. Sze, K.Y., Pan, Y.S.: Hybrid finite element models for piezoelectric materials. J. Sound Vib. 226(3), 519–547 (1999)

    Article  Google Scholar 

  20. Thomas, O., De, J.-F., Ducarne, J.: Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients. Int. J. Numer. Meth. Eng. 80(2), 235–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, J.S.: Equations for thick elastic plates with partially electroded piezoelectric actuators and higher order electric fields. Smart Mater. Struct. 8(1), 73 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Zilian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, S., Zilian, A. Monolithic modeling and finite element analysis of piezoelectric energy harvesters. Acta Mech 228, 2251–2267 (2017). https://doi.org/10.1007/s00707-017-1830-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1830-7

Navigation