Skip to main content

Advertisement

Log in

Ultra-broadband piezoelectric energy harvesting via bistable multi-hardening and multi-softening

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An electromechanical coupled distributed parameter model is derived for a broadband piezoelectric energy harvester with nonlinear magnetic interaction and inductive–resistive interface circuit in the framework of the Hamilton’s principle and Gauss law. The approximate analytical solutions of the responses are obtained based on the equivalent mechanical representation and harmonic balance method. They are validated by experiment data and numerical simulations. The cubic-function discriminant of the analytical solution is introduced to determine the nonlinear boundaries of multiple solutions and the bandwidth with high harvested power. The stability of the multiple solutions is analyzed through Jacobi matrix of the modulation equation. The upward and downward sweep experiments exhibit the bistable and jump phenomena in the hardening range. The state plane of the modulation equation is used to show and explain why different initial conditions yield different stable dynamic motions and exhibit jump phenomenon. Multi-hardening and multi-softening nonlinearities are noted due to the multiply resonances by the inductance in the circuit and nonlinear characteristics of magnetic interaction in the structure. The analytical expression of the determinant of the nonlinear magnetic coefficient with double root of the response is derived to effectively characterize the observed phenomena. Different nonlinear types, e.g., typical nonlinear hardening and softening with two stable and one unstable solutions, and special nonlinear hardening and softening with one stable and one unstable solutions, are noted and investigated. The inductance and cubic magnetic coefficient affect the number and type of the nonlinearities. Multi-hardening or multi-softening nonlinearities enhance the performance of the piezoelectric energy harvester since its bandwidth is significantly broadened to cover up to 40 Hz in the low-frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 44, 175195 (2006)

    Google Scholar 

  2. Matiko, J.W., Grabham, N.J., Beeby, S.P., Tudor, M.J.: Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 25, 012002 (2014)

    Article  Google Scholar 

  3. Dagdeviren, C., Yang, B.D., Su, Y., Tran, P.L., Joe, P., Anderson, E., Xia, J., Doraiswamy, V., Dehdashti, B., Feng, X., Lu, B., Poston, R., Khalpey, Z., Ghaffari, R., Huang, Y., Slepian, M.J., Rogers, J.A.: Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA 111, 1927–1932 (2013)

    Article  Google Scholar 

  4. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, 1–21 (2007)

    Article  Google Scholar 

  5. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-Interscience, New York (1979)

    MATH  Google Scholar 

  6. Javed, U., Abdelkefi, A., Akhtar, I.: An improved stability characterization for aeroelastic energy harvesting applications. Commun. Nonlinear Sci. Numer. Simul. 36, 252–265 (2016)

    Article  Google Scholar 

  7. Yan, Z., Abdelkefi, A.: Nonlinear characterization of concurrent energy harvesting from galloping and base excitations. Nonlinear Dyn. 77(4), 1171–1189 (2014)

    Article  Google Scholar 

  8. Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95, 174103 (2009)

    Article  Google Scholar 

  9. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 95, 254102 (2009)

    Article  Google Scholar 

  10. Tang, L., Yang, Y.: A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl. Phys. Lett. 101, 094102 (2012)

    Article  Google Scholar 

  11. Zhou, S., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)

    Article  MathSciNet  Google Scholar 

  12. Fan, K.Q., Chao, F.B., Zhang, J.G., Wang, W.D., Che, X.H.: Design and experimental verification of a bi-directional nonlinear piezoelectric energy harvester. Energy Convers. Manag. 86, 561–567 (2014)

    Article  Google Scholar 

  13. Su, W.J., Zu, J.: An innovative tri-directional broadband piezoelectric energy harvester. Appl. Phys. Lett. 103, 167–184 (2013)

    Google Scholar 

  14. Kim, P., Yoon, Y.J., Seok, J.: Nonlinear dynamic analyses on a magnetopiezoelastic energy harvester with reversible hysteresis. Nonlinear Dyn. 83, 1823–1854 (2016)

    Article  MathSciNet  Google Scholar 

  15. Dhote, S., Yang, Z., Behdinan, K., Zu, J.: Enhanced broadband multi-mode compliant orthoplanar spring piezoelectric vibration energy harvester using magnetic force. Int. J. Mech. Sci. 135, 63–71 (2018)

    Article  Google Scholar 

  16. Song, H., Kumar, P., Sriramdas, R., Lee, H., Sharpes, N., Kang, M., Maurya, D., Sanghadasa, M., Kang, H., Ryu, J., Reynolds, W., Priya, S.: Broadband dual phase energy harvester: vibration and magnetic field. Appl. Energy 225(1), 1132–1142 (2018)

    Article  Google Scholar 

  17. Chen, L.Q., Jiang, W.A., Panyam, M., Daqaq, M.F.: A broadband internally-resonant vibratory energy harvester. J. Vib. Acoust. 138, 061007-1 (2016)

    Google Scholar 

  18. Lu, Z.Q., Ding, H., Chen, L.Q.: Resonance response interaction without internal resonance in vibratory energy harvesting. Mech. Syst. Signal Process. 121, 767–776 (2019)

    Article  Google Scholar 

  19. Yuan, T.C., Yang, J., Chen, L.Q.: A harmonic balance approach with alternating frequency/time domain progress for piezoelectric mechanical systems. Mech. Syst. Signal Process. 120, 274–289 (2019)

    Article  Google Scholar 

  20. Liu, D., Al-Haik, M., Zakaria, M., Hajj, M.R.: Piezoelectric energy harvesting using L-shaped structures. J. Intell. Mater. Syst. Struct. 29(6), 1206–1215 (2017)

    Article  Google Scholar 

  21. Nie, X., Tan, T., Yan, Z., Hajj, M.R.: Broadband and high-efficient L-shaped piezoelectric energy harvester based on internal resonance. Int. J. Mech. Sci. 159, 287–305 (2019)

    Article  Google Scholar 

  22. Yan, Z., Hajj, M.R.: Energy harvesting from an autoparametric vibration absorber. Smart Mater. Struct. 24(11), 115012 (2015)

    Article  Google Scholar 

  23. Liu, D., Li, H., Feng, H., Yalkun, T., Hajj, M.R.: A multi-frequency piezoelectric vibration energy harvester with liquid filled container as the proof mass. Appl. Phys. Lett. 114(21), 213902 (2019)

    Article  Google Scholar 

  24. Fu, H., Yeatman, E.M.: Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: theoretical modelling and experimental validation. Mech. Syst. Signal Process. 125, 229–244 (2019)

    Article  Google Scholar 

  25. Zhang, H., Xi, R., Xu, D.W., Shi, Q., Zhao, H., Wu, B.: Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism. Energy 181, 1152–1165 (2019)

    Article  Google Scholar 

  26. Fang, S., Fu, X., Liao, W.: Asymmetric plucking bistable energy harvester: modeling and experimental validation. J. Sound Vib. 459, 114852 (2019)

    Article  Google Scholar 

  27. Wang, G., Liao, W., Yang, B., Wang, X., Xu, W., Li, X.: Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier. Mech. Syst. Signal Process. 105, 427–446 (2018)

    Article  Google Scholar 

  28. Yang, K., Fei, F., An, H.: Investigation of coupled lever-bistable nonlinear energy harvesters for enhancement of inter-well dynamic response. Nonlinear Dyn. 96(4), 2369–2392 (2019)

    Article  Google Scholar 

  29. Hagood, N., Flotow, A.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146(2), 243–268 (1991)

    Article  Google Scholar 

  30. Rennoa, J., Daqaqb, M., Inman, D.: On the Optimal Energy Harvesting from a Vibration Source. Energy Harvesting Technologies. Springer, New York (2009)

    Google Scholar 

  31. Li, Y., Richard, C.: Piezogenerator impedance matching using mason equivalent circuit for harvester identification. In: Proceedings of SPIE 9057 active and passive smart structures and integrated systems, San Diego, California, USA. 9057: 90572I (2014)

  32. Abdelmoula, H., Abdelkefi, A.: Ultra-wide bandwidth improvement of piezoelectric energy harvesters through electrical inductance coupling. Eur. Phys. J. Spec. Top. 224(14–15), 2733–2753 (2015)

    Article  Google Scholar 

  33. Tan, T., Yan, Z.: Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters. AIP Adv. 7, 035318 (2017)

    Article  Google Scholar 

  34. Wang, G., Liao, W.H., Zhao, Z., Tan, J., Cui, S., Wu, H., Wang, W.: Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester. Nonlinear Dyn. 97(4), 2371–2397 (2019)

    Article  Google Scholar 

  35. Karami, M.A., Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012)

    Article  Google Scholar 

  36. Green, P.L., Papatheou, E., Sims, N.D.: Energy harvesting from human motion and bridge vibrations: An evaluation of current nonlinear energy harvesting solutions. J. Intell. Mater. Syst. Struct. 24(12), 1494–1505 (2013)

    Article  Google Scholar 

  37. Deng, H., Du, Y., Wang, Z., Ye, J., Zhang, J., Ma, M., Zhong, X.: Poly-stable energy harvesting based on synergetic multistable vibration. Commun. Phys. 2, 21 (2019)

    Article  Google Scholar 

  38. Meirovitch, L.: Fundamentals of Vibration. McGraw Hill, New York (2001)

    Book  Google Scholar 

  39. Standard on Piezoelectricity, IEEE (1987)

  40. Tan, T., Yan, Z., Hajj, M.R.: Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters. Appl. Phys. Lett. 109, 101908 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Nature Science Fund of China for Youth Scientists (Grant Nos. 11902193 and 11802071), Natural Science Fund of Shanghai (Grant No. 19ZR1424300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Sun, W., Hajj, M.R. et al. Ultra-broadband piezoelectric energy harvesting via bistable multi-hardening and multi-softening. Nonlinear Dyn 100, 1057–1077 (2020). https://doi.org/10.1007/s11071-020-05594-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05594-7

Keywords

Navigation