Skip to main content
Log in

Stability analysis and vibration characteristics of an axially moving plate in aero-thermal environment

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The stability and vibration characteristics of an axially moving plate in an aero-thermal environment subjected to transverse excitation are investigated. In the modeling of the equation of motion, the influences of the in-plane thermal load and the perturbation aerodynamic pressure on the transverse bending deflection of the axially moving plate are taken into account. The governing equation of the plate in aero-thermal environment is established applying the Hamilton’s principle based on the von Karman nonlinear plate theory and linear potential flow theory. For the linear equation, the natural frequencies of the moving plate are analyzed by solving the generalized eigenvalue problem. The critical parameters of the moving velocity, flow velocity and temperature change for the divergence of the plate are obtained. For the nonlinear equation, the displacement time responses of the plate in different stability states subjected to transverse excitation are analyzed by numerical simulations. From the study, it can be seen that with the moving velocity, flow velocity and temperature change increasing, the fundamental natural frequency of the plate decreases. When the fundamental natural frequency decreases to 0, the plate is in a divergence type of instability. The critical moving velocity decreases with increasing flow velocities and temperature changes. The vibration amplitude of the plate in divergence state is larger than that in the stable state. The vibration amplitude increases with the flow velocity and temperature change increasing, which illustrates that the aero-thermal environment has significant effects on the stability and vibration properties of the axially moving plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mote, C.D.: Dynamic stability of an axially moving band. J. Frankl. Inst. 285(5), 329–346 (1968)

    Article  MATH  Google Scholar 

  2. Öz, H.R.: Current research on the vibration and stability of axially-moving materials. J. Sound Vib. 20(2), 3–13 (1988)

    Google Scholar 

  3. Wickert, J.A., Mote, C.D.: On the energetics of axially moving continua. J. Acoust. Soc. Am. 85, 1365–1368 (1989)

    Article  Google Scholar 

  4. Pellicano, F., Vestroni, F.: Nonlinear dynamics and bifurcations of an axially moving beam. J. Vib. Acoust. 122(1), 21–30 (2000)

    Article  Google Scholar 

  5. Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58(2), 91–116 (2005)

    Article  Google Scholar 

  6. Guo, X.X., Wang, Z.M., Wang, Y.: Analysis of the coupled thermoelastic vibration for axially moving beam. J. Sound Vib. 325(3), 597–608 (2009)

    Article  Google Scholar 

  7. Spelsberg-Korspeter, G., Kirillov, O.N., Hagedorn, P.: Modeling and stability analysis of an axially moving beam with frictional contact. J. Appl. Mech. 75(3), 031001 (2008)

    Article  Google Scholar 

  8. Ghayesh, M.H.: Stability and bifurcations of an axially moving beam with an intermediate spring support. Nonlinear Dyn. 69(1–2), 1–18 (2011)

    MathSciNet  Google Scholar 

  9. Yao, G., Zhang, Y.: Reliability and sensitivity analysis of an axially moving beam. Meccanica 51(3), 491–499 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kazemirad, S., Ghayesh, M.H., Amabili, M.: Thermo-mechanical nonlinear dynamics of a buckled axially moving beam. Arch. Appl. Mech. 83(1), 25–42 (2013)

    Article  MATH  Google Scholar 

  11. Yang, X.D., Zhang, W.: Nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vibrations. Nonlinear Dyn. 78(4), 2547–2556 (2014)

    Article  Google Scholar 

  12. Ding, H., Yan, Q.Y., Zu, J.W.: Chaotic dynamics of an axially accelerating viscoelastic beam in the supercritical regime. Int. J. Bifurc. Chaos 24(5), 1450062 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghayesh, M.H., Farokhi, H.: Thermo-mechanical dynamics of three-dimensional axially moving beams. Nonlinear Dyn. 80(3), 1643–1660 (2015)

    Article  MathSciNet  Google Scholar 

  14. Lin, C.C.: Stability and vibration characteristics of axially moving plates. Int. J. Solids Struct. 34(24), 3179–3190 (1997)

    Article  MATH  Google Scholar 

  15. Banichuk, N., Jeronen, J., Neittaanmäki, P., Tuovinen, T.: Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid. J. Fluids Struct. 26(2), 274–291 (2010)

    Article  MATH  Google Scholar 

  16. Saksa, T., Jeronen, J.: Estimates for divergence velocities of axially moving orthotropic thin plates. Mech. Des. Struct. Mach. 43(3), 294–313 (2015)

    Article  Google Scholar 

  17. Kim, J., Cho, J., Lee, U., Park, S.: Modal spectral element formulation for axially moving plates subjected to in-plane axial tension. Comput. Struct. 81(20), 2011–2020 (2003)

    Article  Google Scholar 

  18. Kwon, K., Lee, U.: Spectral element modeling and analysis of an axially moving thermoelastic beam-plate. J. Mech. Mater. Struct. 1(4), 605–632 (2006)

    Article  MathSciNet  Google Scholar 

  19. Ghayesh, M.H., Amabili, M.: Non-linear global dynamics of an axially moving plate. Int. J. Nonlinear Mech. 57(4), 16–30 (2013)

    Article  MATH  Google Scholar 

  20. Ghayesh, M.H., Amabili, M., Païdoussis, M.P.: Nonlinear dynamics of axially moving plates. J. Sound Vib. 332(2), 391–406 (2013)

    Article  Google Scholar 

  21. Tang, Y.Q., Chen, L.Q.: Nonlinear free transverse vibrations of in-plane moving plates: without and with internal resonances. J. Sound Vib. 330(1), 110–126 (2011)

    Article  Google Scholar 

  22. Yang, X.D., Zhang, W., Chen, L.Q., Yao, M.H.: Dynamical analysis of axially moving plate by finite difference method. Nonlinear Dyn. 67(2), 997–1006 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, Y.F., Wang, Z.M.: Vibrations of axially moving viscoelastic plate with parabolically varying thickness. J. Sound Vib. 316(316), 198–210 (2008)

    Google Scholar 

  24. Hatami, S., Ronagh, H.R., Azhari, M.: Exact free vibration analysis of axially moving viscoelastic plates. Comput. Struct. 86(17–18), 1738–1746 (2008)

    Article  Google Scholar 

  25. Tang, Y.Q., Chen, L.Q.: Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed. Eur. J. Mech. A. Solids 37, 106–121 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Raju, K.K., Rao, G.V.: Thermal post-buckling of a square plate resting on an elastic foundation by finite element method. Comput. Struct. 28(2), 195–199 (1988)

    Article  MATH  Google Scholar 

  27. Yao, G., Li, F.M.: Stability analysis and active control of a nonlinear composite laminated plate with piezoelectric material in subsonic airflow. J. Eng. Math. 89, 147–161 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo Yao or Yi-Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, G., Zhang, YM., Li, CY. et al. Stability analysis and vibration characteristics of an axially moving plate in aero-thermal environment. Acta Mech 227, 3517–3527 (2016). https://doi.org/10.1007/s00707-016-1674-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1674-6

Navigation