Skip to main content
Log in

A size-dependent nonlinear microbeam model based on the micropolar elasticity theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A size-dependent microbeam model including von Karman geometric nonlinearity is developed based on the micropolar elasticity theory. The governing equations and the boundary conditions are obtained using Hamilton’s principle. In the present model, the microrotation quantity and two new material parameters (characteristic length of material and second shear modulus) are introduced. The size effects, nonlinear static and dynamic behaviors are investigated by directly applying the formulas derived. Special attention is paid on the operating mechanism of microrotation and effects of the second shear modulus on the system. The numerical results for the static bending problem reveal that (1) geometric nonlinearity and the size effect enhance the stiffness of the beam; (2) the microrotation has an opposite motion trend to those of deflection and macroangle of the centroidal axis with changing beam thickness or second shear modulus. A multiple-scale method is employed to obtain an approximate analytical solution for the natural frequency and time response of the beam. It shows that (1) the second shear modulus has significant effects on the lower-order frequency, while the effect on the higher-order frequency is negligible; (2) for increasing the natural frequency of the beam, geometric nonlinearity plays the essential role for the beam with larger thickness, while the size effect plays the essential role for the beam with smaller thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng, G., Zhang, W.M.: Micro-Electro-Mechanical System Dynamics. Science Press, Beijng (2008)

    Google Scholar 

  2. Chen, S.H., Wang, T.: Micro-Scale Plasticity Mechanics. University of Science and Technology of China Press, Anhui (2009)

    Google Scholar 

  3. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. ACTA Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  4. Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta. Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  5. Ma, Q., Clarke, D.R.: Size dependent hardness in silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  Google Scholar 

  6. McElhaney, K.W., Valssak, J.J., Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300–1306 (1998)

    Article  Google Scholar 

  7. Poole, W.J., Ashby, M.F., Fleck, N.A.: Microhardness of annealed and work-hardened copper polycrystals. Scr. Metall. Mater. 34, 559–564 (1996)

    Article  Google Scholar 

  8. Dyszlewicz, J.: Micropolar Theory of Elasticity. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  9. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro elastic solid, Parts I & II. Int. J. Eng. Sci. 2 189–203, 389–404 (1964)

  10. Eringen, A.C., Kafadar, C.B.: Polar Field Theories, Continuum Physics, vol. 4. Academic Press, New York (1976)

    Google Scholar 

  11. Kafadar, C.B., Eringen, A.C.: Micropolar media, I and II. Int. J. Eng. Sci. 9, 271–307 (1971)

    Article  MATH  Google Scholar 

  12. Mindlin, R.D.: Stress function for a Cosserat continuum. Int. J. Solids. Struct. 1, 265–271 (1965)

    Article  Google Scholar 

  13. Ramezani, S., Naghdabadi, R.: Energy pairs in micropolar continuum. Int. J. Solids. Struct. 44, 4810–4818 (2007)

    Article  MATH  Google Scholar 

  14. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids. Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  15. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  MATH  Google Scholar 

  16. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids. 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kong, S., Zhou, S., Nie, Z., Wang, K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46, 427–437 (2008)

    Article  MATH  Google Scholar 

  18. Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A Solid 29, 591–599 (2010)

    Article  Google Scholar 

  19. Simsek, M.: Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified coupled stress theory. Int. J. Eng. Sci. 48, 1721–1732 (2010)

    Article  MATH  Google Scholar 

  20. Xia, W., Wang, L., Yin, L.: Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int. J. Eng. Sci. 48, 2044–2053 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ke, L.L., Wang, Y.S.: Size effect on dynamic stability of functionally graded microbeam based on a modified coupled stress theory. Compos. Struct. 93, 342–350 (2011)

    Article  Google Scholar 

  22. Ansari, R., Gholam, R., Sahmani, S.: Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos. Struct. 94, 221–228 (2011)

    Article  Google Scholar 

  23. Moeenfard, H., Mojahedi, M., Ahmadian, M.: A homotopy perturbation analysis of nonlinear free vibration of Timoshenko microbeams. J. Mech. Sci. Technol. 25, 557–565 (2011)

    Article  MATH  Google Scholar 

  24. Asghari, M., Kahrobaiyan, M., Nikfar, M., Ahmadian, M.T.: A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta. Mech. 223, 1233–1249 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mergen, H.G., Marco, A., Hamed, F.: Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int. J. Eng. Sci. 63, 52–60 (2013)

    Article  MathSciNet  Google Scholar 

  26. Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50, 256–267 (2012)

    Article  MathSciNet  Google Scholar 

  27. Ramezani, S.: A micro scale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory. Int. J. Nonlin. Mech. 47, 863–873 (2012)

    Article  Google Scholar 

  28. Ramezani, S., Naghdabadai, R., Sohrabpour, S.: Analysis of micropolar elastic beams. Eur. J. Mech. A Solid 28, 202–208 (2009)

    Article  MATH  Google Scholar 

  29. Ezzat, M., Hamza, F., Awad, E.: Electro-magneto-thermoelastic plane waves in micropolar solid involving two temperatures. Acta. Mech. Solida. Sin. 23, 200–212 (2010)

    Article  Google Scholar 

  30. Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chong, A.C.M., Yang, F., Tong, P.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16, 1052–1058 (2001)

    Article  Google Scholar 

  32. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  33. Park, S.K., Gao, X.L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59, 904–917 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw, New York (1970)

    MATH  Google Scholar 

  35. Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  36. Ermentrout, B.: XPPAUT 3.0—The Differential Equations Tool. University of Pittsburgh press, Pittsburgh (1997)

    Google Scholar 

  37. Fang, T., Xue, P.: Vibration Theory and Application. Northwestern Polytechnical University Press, Xian (1998)

    Google Scholar 

  38. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, N., Xu, X. & Zheng, Z. A size-dependent nonlinear microbeam model based on the micropolar elasticity theory. Acta Mech 227, 3497–3515 (2016). https://doi.org/10.1007/s00707-016-1672-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1672-8

Navigation