Skip to main content
Log in

Size-dependent nonlinear dynamics of a microbeam based on the modified couple stress theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear dynamics of an electostatically actuated microbeam with von kármán geometric nonlinearity and squeeze-film damping are studied. The governing equations and the boundary conditions are developed using the modified couple stress theory and Hamilton’s principle. The size-dependent responses are investigated for the primary, super-harmonic, sub-harmonic resonances, and static pull-in voltage. The effects of the thickness, width of the beam, and gap between electrodes on the frequency response of the resonance, the peak amplitude, nonlinearity of the system, and the pull-in voltage are investigated. Special attention is paid to the “softening” and “stiffening” effects of the linear stiffness. These results show that static behavior and forced vibration of the microbeam are highly size dependent. In addition, a delayed state feedback is introduced into the system. It shows appropriate control gain, and time delay can control the vibrational behavior of the microbeam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng, G., Zhang, W.M.: Micro-Electro-Mechanical System Dynamics. Science Press, Beijing (2008)

    Google Scholar 

  2. Chen, S.H., Wang, T.: Micro-scale Plasticity Mechanics. University of Science and Technology of China Press, Anhui (2009)

    Google Scholar 

  3. Ding, N., Xu, X., Zheng, Z.Q.: A size-dependent nonlinear microbeam model based on the micropolar elasticity theory. Acta. Mech. 227, 3497–3515 (2016)

    Article  MathSciNet  Google Scholar 

  4. Rahaeifar, M., Kahrobaiyan, M.H., Ahmadian, M.T., et al.: Size-dependent pull-in phenomena in nonlinear microbridges. Int. J. Eng. Sci. 54, 306–310 (2012)

    Google Scholar 

  5. Zand, M.M., Ahmadian, M.T.: Characterization of coupled-domain multi-layer microplates in pull-in phenomenon, vibrations and dynamics. Int. J. Mech. Sci. 49, 1226–1237 (2007)

    Article  Google Scholar 

  6. Nayfeh, A.H., Younis, M.I.: Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J. Micromech. Microeng. 15, 1840–1847 (2005)

    Article  Google Scholar 

  7. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. ACTA Metallurgica et Materialia 42, 475–487 (1994)

    Article  Google Scholar 

  8. Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta. Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  9. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids. Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  10. Xiao, Y., Wang, B.L., Zhou, S.J.: Pull-in voltage analysis of electrostatically actuated MEMS with piezoelectric layers: A size-dependent model. Mech. Res. Commun. 66, 7–14 (2015)

    Article  Google Scholar 

  11. Wang, B.L., Zhou, S.J., Zhao, J.F.: Pull-in instability analysis of electrostatically actuated microplate with rectangular shape. Int. J. Precis. Eng. Manuf. 12, 1085–1094 (2011)

    Article  Google Scholar 

  12. Ghayesh, M.H., Farokhi, H., Alici, G.: Size-dependent electro-elasto-mechanics of MEMS with initially curved deformable electrodes. Int. J. Eng. Sci. 103, 247–264 (2015)

    Google Scholar 

  13. Askari, A.R., Tahani, M.: Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates based on the modified couple stress theory. Phys. E-Low Dimens. Syst. Nanostruct. 86, 262–274 (2017)

    Article  Google Scholar 

  14. Baghani, M.: Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int. J. Eng. Sci. 54, 99–105 (2012)

    Article  Google Scholar 

  15. Zhao, J.F., Zhou, S.J., Wang, B.L., Wang, X.P.: Nonlinear microbeam modal based on strain gradient theory. Appl. Math. Model. 36, 267402686 (2012)

    Google Scholar 

  16. Askari, A.R., Tahani, M.: Size-dependent dynamic pull-in analysis of beam-type MEMS under mechanical shock based on the modified couple stress theory. Appl. Math. Model. 39, 934–946 (2015)

    Article  MathSciNet  Google Scholar 

  17. Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50, 256–267 (2012)

    Article  MathSciNet  Google Scholar 

  18. Askari, A.R., Tahani, M.: The influence of couple stress components and electrostatic actuation on free vibration characteristics of thin micro-plates. In: 7th International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT), Cape Town, South Africa, Feb 01–03 (2016)

  19. Tahani, M., Askari, A.R., Mohandes, Y., et al.: Size-dependent free vibration analysis of electrostatically pre-deformed rectangular micro-plates based on the modified couple stress theory. Int. J. Eng. Sci. 94–95, 185–198 (2015)

    Google Scholar 

  20. Tahani, M., Batra, R.C., Askari, A.R.: Size-dependent free vibrations of electrostatically predeformed functionally graded micro-cantilevers. In: Global Conference on Polymer and Composite Materials (PCM), Beijing, P.R. China, May 16–19 (2015)

  21. Ferezqi, H.Z., Masoud, T., Hamid, E.: Analytical approach to free vibrations of cracked Timoshenko beams made of functionally graded materials. Mech. Adv. Mater. Struct. 17, 353–365 (2010)

    Article  Google Scholar 

  22. Kong, S.L., Zhou, S.J., Nie, Z.F.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids. 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kong, S., Zhou, S., Nie, Z., Wang, K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46, 427–437 (2008)

    Article  MATH  Google Scholar 

  25. Xia, W., Wang, L., Yin, L.: Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int. J. Eng. Sci. 48, 2044–2053 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ke, L.L., Wang, Y.S.: Size effect on dynamic stability of functionally graded microbeam based on a modified coupled stress theory. Compos. Struct. 93, 342–350 (2011)

    Article  Google Scholar 

  27. Farokhi, H., Ghayesh, M.H.: Nonlinear size-dependent dynamics of micro-arches with modal interactions. J. Vib. Control 22, 3679–3689 (2016)

    Article  MathSciNet  Google Scholar 

  28. Zhang, W.M., Meng, G.: Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation. J. IEEE Sens. J. 7, 370–380 (2007)

    Article  Google Scholar 

  29. Farokhi, H., Ghayesh, M.H., Kosasih, B.: On the nonlinear resonant dynamics of Timoshenko microbeams: effects of axial load and geometric imperfection. Meccanica 51, 155–169 (2016)

    Article  MathSciNet  Google Scholar 

  30. Ghayesh, M.H., Farokhi, H.: Nonlinear dynamics of microplates. Int. J. Eng. Sci. 86, 60–73 (2015)

    Article  MathSciNet  Google Scholar 

  31. Ghayesh, M.H., Farokhi, H.: Coupled size-dependent behavior of shear deformable microplates. Acta. Mech. 227, 757–775 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, B.L., Zhao, J.F., Zhou, S.J., et al.: Analysis of wave propagation in micro/nanobeam-like structures: a size-dependent model. Acta Mech. Sin. 28, 1659–1667 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mohammad, H.K., Mohsen, A., Masoud, H., Mohammad, T.A.: Nonlinear size-dependent forced vibrational behavior of microbeams based on a non-classical continuum theory. J. Vib. Control 1, 1–16 (2011)

    MATH  Google Scholar 

  34. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  35. Chong, A.C.M., Yang, F., Tong, P.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16, 1052–1058 (2001)

    Article  Google Scholar 

  36. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids. 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  37. Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12, 759 (2002)

    Article  Google Scholar 

  39. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw, New York (1970)

    MATH  Google Scholar 

  40. Shao, S., Masri, K.M., Younis, M.I.: The effects of time-delayed feedback controller on an electrically actuated resonator. Nonlinear Dyn. 74, 257–270 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ramini, A.H., Younis, M.I., Sue, Q.: A low-gain electrostatically actuated resonant switch. Smart Mater. Struct. 22, 964–1726 (2013)

    Article  Google Scholar 

  42. Hu, H.Y., Wang, Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, N., Xu, X., Zheng, Z. et al. Size-dependent nonlinear dynamics of a microbeam based on the modified couple stress theory. Acta Mech 228, 3561–3579 (2017). https://doi.org/10.1007/s00707-017-1895-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1895-3

Navigation