Skip to main content
Log in

Nonlinear vibration control of cable net structures with bounded uncertainties

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The active vibration control of cable net structures by piezoelectric stacked actuators is the subject of the present work. The focus of this paper lies on the proposal of a nonlinear method to address the vibration problem for such structures in the presence of uncertainties. To this end, a cable net structure with integrated piezoelectric stacked actuators is considered. For the structure, a nominal model is derived through the finite element method, and an uncertain model is constructed on the basis of the nominal model by taking into consideration the uncertainties. Based on the established uncertain model, a nonlinear state feedback control is deduced through the Lyapunov stability theory. This control guarantees that every uncertain system response enters and remains within a certain neighborhood of the zero state after a finite interval of time. To demonstrate the superiority of the proposed nonlinear control, a linear control based on the linear quadratic regulator is presented for comparison. Displacement responses and control voltages of the uncertain system under an impulse excitation are simulated for both the nonlinear and linear control cases. It is observed that the nonlinear method is feasible and robust as it stabilizes the uncertain system to a smaller size of the region of ultimate boundedness. Besides, the nonlinear approach improves the performance of the uncertain system by reducing the vibration to a lower amplitude within a shorter time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, T.J., Zuowei, W., Deng, H.: Mesh reflector antennas: form-finding analysis review. (2013). doi:10.2514/6.2013-1576

  2. Tibert, A.G., Pellegrino, S.: Deployable tensegrity reflectors for small satellites. J. Spacecr. Rocket. 39(5), 701–709 (2002). doi:10.2514/2.3867

    Article  Google Scholar 

  3. Haiyan, H., Qiang, T., Wei, Z: Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Advances in Mechanics 43(4), 390–414 (2013). doi:10.6052/1000-0992-13-045

  4. Balas, M.J.: Active control of flexible systems. J. Optim. Theory Appl. 25(3), 415–436 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Inman, D.J.: Active modal control for smart structures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 359(1778), 205–219 (2001). doi:10.1098/rsta.2000.0721

    Article  MATH  Google Scholar 

  6. Sakamoto, H., Park, K.C.: Localized vibration isolation strategy for low-frequency excitations in membrane space structures. J. Vib. Acoust. 128(6), 790 (2006). doi:10.1115/1.2203341

    Article  Google Scholar 

  7. Li, W.B., Li, X.R., Zhao, Z.G., Wang, Y.Y., Zhao, Y.: Optimal piezoelectric sensors and actuators deployment for active vibration suppression of satellite antenna reflector. Adv. Mech. Des. Pts. 1—-3(479—-481), 1490–1494 (2012). doi:10.4028/www.scientific.net/AMR.479-481.1490

    MathSciNet  Google Scholar 

  8. Goh, C.J., Caughey, T.K.: On the stability problem caused by finite actuator dynamics in the collocated control of large space structures. Int. J. Control 41(3), 787–802 (1985). doi:10.1080/0020718508961163

    Article  MathSciNet  MATH  Google Scholar 

  9. Mahmoodi, S.N., Ahmadian, M.: Active vibration control with modified positive position feedback. J. Dyn. Syst. Meas. Control 131(4), 041002 (2009). doi:10.1115/1.3089565

    Article  Google Scholar 

  10. Nima Mahmoodi, S., Ahmadian, M., Inman, D.J.: Adaptive modified positive position feedback for active vibration control of structures. J. Intell. Mater. Syst. Struct. 21(6), 571–580 (2010). doi:10.1177/1045389x10361631

    Article  Google Scholar 

  11. Ghasemi-Nejhad, M.N., Wang, Y., Inman, D.J.: Energy-based comparison of various controllers for vibration suppression using piezoceramics. 7977, 79771O-79771O-79715 (2011). doi:10.1117/12.880434

  12. Liu, G.P., Liu, W.Q., Duan, G.R.: Robust model reference control for multivariable linear systems subject to parameter uncertainties. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 215(6), 599–610 (2001). doi:10.1243/0959651011541337

    Google Scholar 

  13. Omidi, E., Mahmoodi, S.N.: Vibration control of collocated smart structures using \(H\infty \) modified positive position and velocity feedback. J. Vib. Control (2014). doi:10.1177/1077546314548471

  14. Tuanjie, L., Yujuan, M.: Robust vibration control of flexible cable-strut structure with mixed uncertainties. J. Vib. Control 17(9), 1407–1416 (2010). doi:10.1177/1077546310381100

    Article  MATH  Google Scholar 

  15. Thomson, M.W.: The AstroMesh deployable reflector. In: IUTAM-IASS Symposium on Deployable Structures: Theory and Applications 2000, pp. 435–446. Springer

  16. Jalili, N.: Piezoelectric-Based Vibration Control: From Macro to Micro/Nano Scale Systems. Springer, New York (2009)

    Google Scholar 

  17. Benjeddou, A.: Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. Struct. 76(1–3), 347–363 (2000). doi:10.1016/S0045-7949(99)00151-0

    Article  Google Scholar 

  18. Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics. Oxford University Press, Oxford (2014)

    Book  MATH  Google Scholar 

  19. Wang, Z., Li, T.: Optimal Piezoelectric sensor/actuator placement of cable net structures using H 2-norm measures. J. Vib. Control 20(8), 1257–1268 (2013). doi:10.1177/1077546312472927

    Article  MathSciNet  Google Scholar 

  20. Mobrem, M.: Methods of analyzing surface accuracy of large antenna structures due to manufacturing tolerances. In: Proceedings of the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, p. 2003. Virginia, AIAA, Norfolk (2003)

  21. Anderson, B.D., Moore, J.B.: Optimal control: linear quadratic methods. Prentice-Hall International, Inc., New Jersey (2007)

  22. Leitmann, G.: On the efficacy of nonlinear control in uncertain linear systems. J. Dyn. Syst. Meas. Contr. 103(2), 95–102 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Barmish, B.R., Petersen, I.R., Feuer, A.: Linear ultimate boundedness control of uncertain dynamical systems. Automatica 19(5), 523–532 (1983)

    Article  MATH  Google Scholar 

  24. Liu, W., Li, D.-X., Jiang, J.-P.: Mesh topological form design and geometrical configuration generation for cable-network antenna reflector structures. Struct. Eng. Mech. 45(3), 411–422 (2013). doi:10.12989/sem.2013.45.3.411

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Zhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YS., Zhang, WZ., Meng, XY. et al. Nonlinear vibration control of cable net structures with bounded uncertainties. Acta Mech 227, 2985–3000 (2016). https://doi.org/10.1007/s00707-016-1656-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1656-8

Navigation