Skip to main content
Log in

Perturbations of Lagrangian systems based on the preservation of subalgebras of Noether symmetries

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Systems of second-order ordinary differential equations admitting a Lagrangian formulation are perturbed requiring that the extended Lagrangian preserves a fixed subalgebra of Noether symmetries of the original system. For the simple Lie algebra \(\mathfrak {sl}(2,\mathbb {R})\), this provides nonlinear systems with two independent constants of the motion quadratic in the velocities. Pinney-type equations are characterized as the most general \(\mathfrak {sl}(2,\mathbb {R})\)-preserving perturbation of the time-dependent (damped) harmonic oscillator. The procedure is generalized naturally to higher dimensions. In particular, it is shown that any perturbation of the time-dependent harmonic oscillator in two dimensions that preserves an \(\mathfrak {sl}(2,\mathbb {R})\) subalgebra of Noether symmetries is equivalent to a generalized Ermakov–Ray–Reid system that satisfies the Helmholtz conditions of the Inverse Problem of Lagrangian Mechanics. Application of the method to determine perturbations of the free Lagrangian in \(\mathbb {R}^{N}\) is illustrated for the canonical chain of subalgebras of the Lie algebra \(\mathfrak {sl}(2,\mathbb {R})\oplus \mathfrak {so}(N)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Djukic, Dj.S., Vujanovic, B.: Noether’s theory in classical nonconservative mechanics. Acta Mech. 23, 17–27 (1975)

  2. Goncharenko, A.M., Kukushkin, V.G., Logvin, YuA, Samson, A.M.: Ermakov Hamiltonian systems in a problem on the propagation of two orthogonally polarized beams in a nonlinear medium. Dokl. Akad. Nauk BSSR 35, 780–783 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Kaushal, R.S.: Classical and Quantum Mechanics of Noncentral Potentials: A Survey of Two-Dimensional Systems. Springer, New York (1998)

    Book  MATH  Google Scholar 

  4. Mei, F.X.: Lie symmetries and conserved quantities of constrained mechanical systems. Acta Mech. 141, 135–148 (2000)

    Article  MATH  Google Scholar 

  5. Tsamparlis, M., Paliathanasis, A.: Two-dimensional dynamical systems which admit Lie and Noether symmetries. J. Phys. A Math. Theor. 44, 175202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mušicki, Dj: Analysis of a class of nonconservative systems reducible to pseudoconservative ones and their energy relations. Acta Mech. 223, 2117–2133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. López Ruiz, F.F., Guerrero, J.: Generalization of the Ermakov system through the quantum Arnol’d transformation. J. Phys. Conf. Ser. 538, 012015 (2014)

    Article  Google Scholar 

  8. Lewis, H.R.: Class of exact invariants for classical and quantum time-dependent harmonic oscillators. J. Math. Phys. 11, 1976–1986 (1968)

    Article  MATH  Google Scholar 

  9. Lutzky, M.: Noether’s theorem and the time-dependent harmonic oscillator. Phys. Lett. A 68, 3–4 (1978)

    Article  MathSciNet  Google Scholar 

  10. Ray, J.R., Reid, J.L.: More exact invariants for the time-dependent harmonic oscillator. Phys. Lett. A 71, 317–318 (1979)

    Article  MathSciNet  Google Scholar 

  11. Ray, J.R., Reid, J.L.: Ermakov systems, velocity dependent potentials, and nonlinear superposition. J. Math. Phys. 22, 91–95 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Leach, P.G.L.: A theorem for time-dependent dynamical systems. Phys. Lett. A 98, 89–91 (1983)

    Article  MathSciNet  Google Scholar 

  13. Vujanovic, B.D.: Application of the Hamilton–Jacobi method to the study of rheo-linear equations. Acta Mech. 93, 179–190 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rogers, C., Hoenselaers, C., Ramgulam, U.: Ermakov structure in 2+1-dimensional systems. Canonical reduction. In: Ibragimov, N.H., Torrisi, M., Valenti, A. (eds.) Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics, pp. 317–328. Kluwer, Amsterdam (1993)

    Chapter  Google Scholar 

  15. Schief, W.K., Rogers, C., Bassom, A.P.: Ermakov systems in arbitrary order and dimension: structure and linearization. J. Phys. A Math. Gen. 29, 903–911 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Govinder, K.S., Leach, P.G.L.: Ermakov systems: a group theoretic approach. Phys. Lett. A 186, 391–395 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haas, F., Goedert, J.: Dynamical symmetries and the Ermakov invariant. Phys. Lett. A 279, 181–188 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cantrijn, F., Sarlet, W.: Generalization of Noether’s theorem in classical mechanics. SIAM Rev. 23, 467–493 (1980)

    MathSciNet  MATH  Google Scholar 

  19. Prince, G.: Towards a classification of dynamical symmetries in classifical mechanics. Bull. Austral. Math. Soc. 27, 53–71 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Musielak, Z.E.: Standard and non-standard Lagrangians for dissipative systems with variable coefficients. J. Phys. A Math. Theor. 41, 055205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Campoamor-Stursberg, R.: \(N=2\) integrable systems and first integrals constrained by scaling symmetries. Int. J. Geom. Methods Mod. Phys. 10, 130006 (2013)

    Article  MathSciNet  Google Scholar 

  22. Gray, R.J.: The Lie point symmetry generators admitted by systems of linear differential equations. Proc. R. Soc. A 470, 20130779 (2014)

    Article  MathSciNet  Google Scholar 

  23. Campoamor-Stursberg, R.: On certain types of point symmetries of systems of second-order ordinary differential equations. Commun. Nonlinear Sci. Numer. Simul. 19, 2602–2614 (2014)

    Article  MathSciNet  Google Scholar 

  24. Ballesteros, A., Blasco, A., Herranz, F.J., de Lucas, J., Sardón, C.: Lie–Hamilton systems on the plane: theory, classification and applications. J. Diff. Equ. 258, 2873–2907 (2015)

  25. Cariñena, J.F., Ibort, A., Marmo, G., Morandi, G.: Geometry from Dynamics, Classical and Quantum. Springer, New York (2015)

    Book  MATH  Google Scholar 

  26. Hojman, S.A.: Construction of Lagrangian and Hamiltonian structures starting from one constant of motion. Acta Mech. 226, 735–744 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pinney, E.: The nonlinear differential equation \(y^{\prime \prime }+p(x)y+c\;y^{-3}=0\). Proc. Am. Math. Soc. 1, 681 (1950)

    MathSciNet  MATH  Google Scholar 

  28. Havas, P.: The range of application of the Lagrange formalism. Suppl. Nuovo Cimento 5, 363–388 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  29. Santilli, R.M.: Foundations of Theoretical Mechanics I. The Inverse Problem in Newtonian Mechanics. Springer, New York (1979)

    Google Scholar 

  30. Stephani, H.: Differentialgleichungen. Symmetrien und Lösungsmethoden. Spektrum, Heidelberg (1993)

    Google Scholar 

  31. Marmo, G., Saletan, E.J.: Ambiguities in the Lagrangian and Hamiltonian formalism: transformation properties. Nuovo Cimento 40B, 67–89 (1977)

    Article  MathSciNet  Google Scholar 

  32. Jones, S.E., Vujanovic, B.: On the inverse Lagrangian problem. Acta Mech. 73, 245–251 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Casetta, L., Pesce, C.P.: The inverse problem of Lagrangian mechanics for Meshchersky’s equation. Acta Mech. 226, 63–79 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Eliezer, C.J.: The symmetries and first integrals of some differential equations of dynamics. Hadron. J. 2, 1067–1109 (1979)

    MathSciNet  Google Scholar 

  35. Campoamor-Stursberg, R.: An alternative approach to systems of second-order ordinary differential equations with maximal symmetry. Realizations of \({\mathfrak{sl}}(n+2,{\mathbb{R}})\) by special functions. Commun. Nonlinear Sci. Numer. Simul. 37, 200–211 (2016)

    Article  MathSciNet  Google Scholar 

  36. Prince, G.E., Eliezer, C.J.: Symmetries of the time-dependent \(N\)-dimensional oscillator. J. Phys. A Math. Gen. 13, 815–823 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. Reid, J.L., Ray, J.R.: Lie symmetries, nonlinear equations of motion and new Ermakov systems. J. Phys. A Math. Gen. 15, 2751–2760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fels, M.E.: The equivalence problem for systems of second-order ordinary differential equations. Proc. Lond. Math. Soc. 71, 221–240 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Goedert, J.: Second constant of motion for generalized Ermakov systems. Phys. Lett. A 136, 391–394 (1989)

    Article  MathSciNet  Google Scholar 

  40. Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. Band I. Akademische Verlagsgesellschaft, Leipzig (1961)

  41. Dickson, L.E.: Differential equations from the group standpoint. Ann. Math. 26, 287–378 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  42. Campoamor-Stursberg, R.: Superposition of super-integrable pseudo-Euclidean potentials in \(N=2\) with a fundamental constant of motion of arbitrary order in the momenta. J. Math. Phys. 55, 042904 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Campoamor-Stursberg.

Additional information

During the preparation of this work, the author was financially supported by the research project MTM2013-43820-P of the MINECO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campoamor-Stursberg, R. Perturbations of Lagrangian systems based on the preservation of subalgebras of Noether symmetries. Acta Mech 227, 1941–1956 (2016). https://doi.org/10.1007/s00707-016-1621-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1621-6

Keywords

Navigation