Skip to main content
Log in

Three-point geometric parameter for the transverse cross section of a fibrous composite

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A fiber-reinforced composite in which aligned fibers of uniform size are randomly embedded in a continuous matrix is considered. Bounds on the transverse effective transport property of the composite which were statistically evaluated by Monte Carlo simulations are discussed and analyzed with reference to the third-order perturbation bounds. Three-point geometric parameters for the transverse cross section of the composite are inferred from one of the previously reported results, and comparisons are made with those from other models. It is concluded that the three-point parameters can be used to quantify the geometrical arrangement of the fibers in the matrix. With the extracted three-point parameters, the fourth-order bounds can be exploited to sharpen the numerical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chamis, C.C., Sendeckyj, G.P.: Critique on theories predicting thermoelastic properties of fibrous composites. J. Compos. Mater. 2, 332–358 (1968)

    Article  Google Scholar 

  2. Hale, D.K.: The physical properties of composite materials. J. Mater. Sci. 11, 2105–2141 (1976)

    Article  Google Scholar 

  3. Hashin, Z.: Analysis of composite materials—a survey. J. Appl. Mech. 50, 481–505 (1983)

    Article  MATH  Google Scholar 

  4. Torquato, S.: Random heterogeneous media: microstructure and improved bounds on effective properties. Appl. Mech. Rev. 44, 37–76 (1991)

    Article  MathSciNet  Google Scholar 

  5. Adam, D.F., Doner, D.R.: Longitudinal shear loading of a unidirectional composite. J. Compos. Mater. 1, 4–17 (1967)

    Google Scholar 

  6. Perrins, W.T., McKenzie, D.R., McPhedran, R.C.: Transport properties of regular arrays of cylinders. Proc. R. Soc. Lond. A 369, 207–225 (1979)

    Article  MathSciNet  Google Scholar 

  7. Milton, G.W., McPhedran, R.C., McKenzie, D.R.: Transport properties of arrays of intersecting cylinders. Appl. Phys. 25, 23–30 (1981)

    Article  Google Scholar 

  8. Nakamura, M.: Effective conductivity of regular conducting channeling textures in two dimensions. J. Appl. Phys. 54, 7012–7015 (1983)

    Article  Google Scholar 

  9. James, B.W., Wostenholm, G.H., Keen, G.S., Mclvor, S.D.: Prediction and measurement of the thermal conductivity of composite materials. J. Phys. D Appl. Phys. 20, 261–268 (1987)

    Article  Google Scholar 

  10. Hashin, Z.: On elastic behavior of fiber reinforced materials of arbitrary transverse phase geometry. J. Mech. Phys. Solids 13, 119–134 (1965)

    Article  Google Scholar 

  11. Beran, M.J., Silnutzer, N.: Effective electric, thermal and magnetic properties of fiber-reinforced materials. J. Compos. Mater. 5, 246–249 (1971)

    Article  Google Scholar 

  12. Milton, G.W.: Bounds on elastic and transport properties of two-component composites. J. Mech. Phys. Solids 30, 177–191 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. McCoy, J.J.: Bounds on the transverse effective conductivity of computer-generated fiber composites. J. Appl. Mech. 49, 319–326 (1982)

    Article  MATH  Google Scholar 

  14. Torquato, S., Lado, F.: Improved bounds on effective elastic moduli of random arrays of cylinders. J. Appl. Mech. 59, 1–6 (1992)

    Article  MathSciNet  Google Scholar 

  15. Weng, G.J.: Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. Int. J. Eng. Sci. 30, 83–92 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chiang, C.R.: Bounds on the transverse effective conductivity of a fiber-reinforced composite. Int. J. Fract. 159, 93–100 (2009)

    Article  MATH  Google Scholar 

  17. Chiang, C.R.: Computation of the bounds on the elastic moduli of a fiber-reinforced composite by Monte Carlo simulations. Acta Mech. 217, 257–267 (2011)

    Article  MATH  Google Scholar 

  18. Progelhof, R.C., Throne, J.L., Ruetsch, R.R.: Methods for predicting the thermal conductivity of composite system: a review. Polym. Eng. Sci. 16, 615–625 (1976)

    Article  Google Scholar 

  19. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131 (1962)

    Article  MATH  Google Scholar 

  20. Schulgasser, K.: On the conductivity of fiber reinforced materials. J. Math. Phys. 17, 382–387 (1976)

    Article  Google Scholar 

  21. Miller, M.N.: Bounds for effective electrical, thermal, and magnetic properties of heterogeneous materials. J. Math. Phys. 10, 1988–2004 (1968)

    Article  Google Scholar 

  22. McPhedran, R.C., Milton, G.W.: Bounds and exact theories of the transport properties of inhomogeneous media. Appl. Phys. A 26, 207–220 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ron Chiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, CR. Three-point geometric parameter for the transverse cross section of a fibrous composite. Acta Mech 227, 1919–1926 (2016). https://doi.org/10.1007/s00707-016-1609-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1609-2

Keywords

Navigation