Skip to main content
Log in

A Runge–Kutta–Chebyshev SPH algorithm for elastodynamics

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A stable and accurate Smoothed Particle Hydrodynamics (SPH) method is proposed for solving elastodynamics in solid mechanics. The SPH method is mesh-free, and it promises to overcome most of disadvantages of the traditional finite element techniques. The absence of a mesh makes the SPH method very attractive for those problems involving large deformations, moving boundaries and crack propagation. However, the conventional SPH method still has significant limitations that prevent its acceptance among researchers and engineers, namely the stability and computational costs. In approximating unsteady problems using the SPH method, attention should be given to the choice of time integration schemes as accuracy and efficiency of the SPH solution may be limited by the timesteps used in the simulation. This study presents an attempt to reconstruct an unconditionally stable SPH method for elastodynamics. To achieve this objective we implement an explicit Runge–Kutta Chebyshev scheme with extended stages in the SPH method. This time stepping scheme adds in a natural way a stabilizing stage to the conventional Runge–Kutta method using the Chebyshev polynomials. Numerical results are shown for several test problems in elastodynamics. For the considered elastic regimes, the obtained results demonstrate the ability of our new algorithm to better maintain the shape of the solution in the presence of shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altomare C., Crespo A.J.C., Rogers B.D., Dominguez J.M., Gironella X., Gomez-Gesteira M.: Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics. Comput. Struct. 130, 34–45 (2014)

    Article  Google Scholar 

  2. Arnold D.N., Lee J.J.: Mixed methods for elastodynamics with weak symmetry. SIAM J. Numer. Anal. 50, 2743–2769 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashby M.F., Jones D.R.H.: Engineering Materials 2. Elsevier, Amsterdam (2013)

    Google Scholar 

  4. Atluri S.N., Zhu T.: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bui H.H., Fukagawa R., Sako K., Ohno S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Inter. J. Numer. Anal. Methods Geomech. 32, 1537–1570 (2008)

    Article  MATH  Google Scholar 

  6. Bui H.H., Fukagawa R., Sako K., Wells J.C.: Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH). Geotechnique 61, 565–574 (2011)

    Article  Google Scholar 

  7. Doring, M., Oger, G., Alessandrini, B., Ferrant, P.: SPH simulations of floating bodies in waves. In: Proceedings of the International Workshop on Water Waves and Floating Bodies (IWWWFB), Cortona, Italy (2004)

  8. Dyka C.T., Ingel R.P.: An approach for tension instability in smoothed particle hydrodynamics (SPH). Comput. Struct. 57, 573–580 (1995)

    Article  MATH  Google Scholar 

  9. Dyka C.T., Randles P.W.: Stress points for tension instability in SPH. Inter. J. Numer. Methods Eng. 39, 2725–2741 (1996)

    Article  MATH  Google Scholar 

  10. Gingold R.A., Monaghan J.J.: Smoothed particles hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    Article  MATH  Google Scholar 

  11. Gomez-Gesteira M., Rogers B.D., Crespo A.J.C., Dalrymple R.A., Narayanaswamy M.: SPHysics development of a free-surface fluid solverpart 1: theory and formulations. Comput. Geosci. 48, 289–299 (2012)

    Article  Google Scholar 

  12. Gray J.P., Monaghan J.J., Swift R.P.: SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 190, 6641–6662 (2001)

    Article  MATH  Google Scholar 

  13. Hernquist L., Katz N.: TreeSPH—a unification of SPH with the hierarchical tree method. Astrophys. J. Suppl. Ser. 70, 419–446 (1989)

    Article  Google Scholar 

  14. Hoover W.G., Hoover C.G.: Spam-based recipes for continuum simulations. Comput. Sci. Eng. 3, 78–85 (2001)

    Article  Google Scholar 

  15. Kandilas C.B.: Transient elastodynamic analysis of nonhomogeneous anisotropic plane bodies. Acta Mech. 223, 861–878 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Landau L.D., Lifshitz E.M.: Theory of Elasticity, vol. 7, 2nd edn. Pergamon Press, Oxford (1970)

    Google Scholar 

  17. Libersky L.D., Petschek A.G., Carney T.C., Hipp J.R., Allahdadi F.A.: High strain Lagrangian hydrodynamics: a three dimensional SPH code for dynamic material response. J. Comput. Phys. 109, 67–75 (1993)

    Article  MATH  Google Scholar 

  18. Liu G.R., Liu M.B.: Smoothed Particles Hydrodynamics: A Meshfree Particle Method. World Scientific Publishing, Singapore (2004)

    MATH  Google Scholar 

  19. Liu M.B., Liu G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Archives of computational methods in engineering. Mon. Not. Royal Astron. Soc. 17, 25–76 (2010)

    MATH  Google Scholar 

  20. Lucy L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  21. Mirzaei D., Hasanpour K.: Direct meshless local Petrov–Galerkin method for elastodynamic analysis. Acta Mech. 276, 1–14 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Monaghan J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)

    Article  MATH  Google Scholar 

  23. Monaghan J.J.: SPH without a tensile instability. J. Comput. Phys. 159, 290–311 (2000)

    Article  MATH  Google Scholar 

  24. Monaghan J.J., Lattanzio J.C.: A refined particle method for astrophysical problems. Astron. Astrophys. 149, 135–143 (1985)

    MATH  Google Scholar 

  25. Monaghan J.J.: On the problem of penetration in particle methods. J. Comput. Phys. 82, 1–15 (1989)

    Article  MATH  Google Scholar 

  26. Monaghan J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  MathSciNet  Google Scholar 

  27. Morris J.P., Fox P.J., Zhu Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)

    Article  MATH  Google Scholar 

  28. Randles P.W., Libersky L.D.: Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139, 375–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Randles P.W., Libersky L.D.: Normalized SPH with stress points. Int. J. Numer. Methods Eng. 48, 1445–1462 (2000)

    Article  MATH  Google Scholar 

  30. Robinson M.: Turbulence and Viscous Mixing Using Smoothed Particle Hydrodynamics. Monash University, Clayton (2009)

    Google Scholar 

  31. Sellountos E.J., Sequeira A., Polyzos D.: A new LBIE method for solving elastodynamic problems. Eng. Anal. Bound. Elem. 35, 185–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shao J.R., Li H.Q., Liu G.R., Liu M.B.: An improved SPH method for modeling liquid sloshing dynamics. Comput. Struct. 100-101, 18–26 (2012)

    Article  Google Scholar 

  33. Srivastava, S.: Mixed discontinuous Galerkin methods: application to nonlinear elastodynamics. Ph.D. thesis in State University of New York at Buffalo (2008)

  34. Takeda H., Miyama S.M., Sekiya M.: Numerical simulation of viscous flow by smoothed particle hydrodynamics. Prog. Theor. Phys. 92, 939 (1994)

    Article  Google Scholar 

  35. Verwer J.G., Hundsdorfer W.H., Sommeijer B.P.: Convergence properties of the Runge–Kutta–Chebyshev method. Numer. Math. 57, 157–178 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Van der Houwen P.J.: Explicit Runge–Kutta formulas with increased stability boundaries. Numer. Math. 20, 149–164 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  37. Van der Houwen P.J., Sommeijer B.P.: On the internal stability of explicit, m-stage Runge–Kutta methods for large m-values. Z. Angew. Math. Mech. 60, 479–485 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vignjevic R., Reveles J.R., Campbell J.: SPH in a total Lagrangian formalism. Comput. Model. Eng. Sci. 14(3), 181198 (2006)

    MathSciNet  Google Scholar 

  39. Violeau D., Leroy A.: Optimal time step for incompressible SPH. J. Comput. Phys. 288, 119–130 (2015)

    Article  MathSciNet  Google Scholar 

  40. Zhang A., Ming F., Cao X.: Total Lagrangian particle method for the large-deformation analyses of solids and curved shells. Acta Mech. 225, 253–275 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang A., Sun P., Ming F.: An SPH modeling of bubble rising and coalescing in three dimensions. Comput. Methods Appl. Mech. Eng. 294, 189–209 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisha He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Seaid, M. A Runge–Kutta–Chebyshev SPH algorithm for elastodynamics. Acta Mech 227, 1813–1835 (2016). https://doi.org/10.1007/s00707-016-1603-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1603-8

Keywords

Navigation