Skip to main content
Log in

Accurate prediction of three-dimensional free edge stress field in composite laminates using mixed-field multiterm extended Kantorovich method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An accurate prediction of the three-dimensional (3D) and often singular stress field at the free edges of composite laminates has been the subject of intense research since the pioneering numerical work of Pipes and Pagano (J. Compos. Mater. 4:538–548, 1970). In this work, we present an accurate 3D elasticity-based solution for determining the free edge stress field in laminates under uniaxial extension, bending, twisting and thermal loading, using the mixed-field multiterm extended Kantorovich method (MMEKM), which is a powerful iterative analytical method, developed recently by the author group. Unlike the existing 3D elasticity-based solutions, the present solution satisfies all the boundary conditions and the interfacial continuity conditions exactly at all points. The results are compared with various existing solutions reported for symmetric cross-ply and angle-ply laminates. New results are presented for the free edge stress field in antisymmetric angle-ply laminates for the four different load cases. The results show a rapid convergence and excellent accuracy of the MMEKM solution in all cases. The solution successfully captures the stress singularity at the free edge by predicting a steadily increasing peak value with increasing number of terms. The presented results will serve as useful benchmarks for assessing the accuracy of other approximate 3D and 2D theory-based solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andakhshideh A., Tahani M.: Free-edge stress analysis of general rectangular composite laminates under bending, torsion and thermal loads. Eur. J. Mech. A/Solids 42, 229–240 (2013)

    Article  Google Scholar 

  2. Andakhshideh A., Tahani M.: Interlaminar stresses in general thick rectangular laminated plates under in-plane loads. Compos. Part B 47, 58–69 (2013)

    Article  Google Scholar 

  3. Becker W.: Closed-form solution for the free-edge effect in cross-ply laminates. Compos. Struct. 26, 39–45 (1993)

    Article  Google Scholar 

  4. Becker W.: Free-edge stress concentration in angle-ply laminates. Arch. Appl. Mech. 65, 38–43 (1995)

    MATH  Google Scholar 

  5. Cho M., Kim H.S.: Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings. Int. J. Solids Struct. 37, 435–459 (2000)

    Article  MATH  Google Scholar 

  6. Cho M., Yoon J.Y.: Free-edge interlaminar stress analysis of composite laminates by extended Kantorovich method. AIAA J. 37, 656–660 (1999)

    Article  Google Scholar 

  7. Davi G., Milazzo A.: Bending stress fields in composite laminate beams by a boundary integral formulation. Comput. Struct. 71, 267–276 (1999)

    Article  Google Scholar 

  8. Esquej R., Castejon L., Lizaranzu M., Carrera M., Miravete A., Miralbes R.: A new finite element approach applied to the free edge effect on composite materials. Compos. Struct. 98, 121–129 (2013)

    Article  Google Scholar 

  9. Flanagan G.: An efficient stress function approximation for free-edge stresses in laminates. Int. J. Solids Struct. 31, 941–952 (1994)

    Article  MATH  Google Scholar 

  10. Hayashi T.: Analytical study of interlaminar shear stresses in a laminated composite plate. Trans. Jpn. Soc. Aeronaut. Space Sci. 10, 43–48 (1967)

    Google Scholar 

  11. Herakovich C.T.: On thermal edge effects in composite laminates. Int. J. Mech. Sci. 18, 129–134 (1976)

    Article  Google Scholar 

  12. Icardi U., Bertetto A.M.: An evaluation of the influence of geometry and of material properties at free edges and at the corners of composite laminates. Comput. Struct. 57, 555–571 (1995)

    Article  MATH  Google Scholar 

  13. Jones R.M.: Mechanics of Composite Materials. Taylor & Francis, New York (1999)

    Google Scholar 

  14. Kant T., Swaminathan K.: Estimation of transverse/interlaminar stresses in laminated composites - a selective review and survey of current developments. Compos. Struct. 49, 65–75 (2000)

    Article  Google Scholar 

  15. Kapuria, S., Dhanesh, N.: Three-Dimensional extended Kantorovich solution for accurate prediction of interlaminar stresses in composite laminated panels with interfacial imperfections. J. Eng. Mech. ASCE 141, 04014140 (pp. 1–11) (2015)

  16. Kapuria S., Dumir P.C., Sengupta S.: Three dimensional solution for shape control of a simply supported rectangular hybrid plate. J. Thermal Stresses 22, 159–176 (1999)

    Article  Google Scholar 

  17. Kapuria, S., Kumari, P.: Multiterm extended Kantorovich method for three-dimensional elasticity solution of laminated plates. J. Appl. Mech. 79, 061018 (pp. 1–9) (2012)

  18. Kapuria, S., Kumari, P.: Extended Kantorovich method for coupled piezoelasticity solution of piezolaminated plates showing edge effects. Proc. R. Soc. A 469, 20120565 (pp. 1–19) (2013)

  19. Kassapoglou C., Lagace P.A.: Closed form solution for the interlaminar stress field in angle-ply and cross-ply laminates. J. Compos. Mater. 21, 292–308 (1987)

    Article  Google Scholar 

  20. Kerr A.D.: An extension of the Kantorovich method. Quart. Appl. Math. 26, 219–229 (1968)

    Article  MATH  Google Scholar 

  21. Kim H.S., Cho M., Kim G.I.: Free-edge strength analysis in composite laminates by the extended Kantorovich method. Compos. Struct. 49, 229–235 (2000)

    Article  Google Scholar 

  22. Kim H.S., Cho M., Lee J., Deheeger A., Grediac M., Mathias J.D.: Three dimensional stress analysis of a composite patch using stress functions. Int. J. Mech. Sci. 52, 1646–1659 (2010)

    Article  Google Scholar 

  23. Kim H.S., Lee J., Cho M.: Free-edge interlaminar stress analysis of composite laminates using interface modeling. J. Eng. Mech. ASCE 138, 973–983 (2012)

    Article  Google Scholar 

  24. Kim T., Atluri S.N.: Interlaminar stresses in composite laminates under out-of-plane shear/bending. AIAA J. 32, 1700–1708 (1994)

    Article  MATH  Google Scholar 

  25. Kim T., Atluri S.N.: Analysis of edge stresses in composite laminates under combined thermo-mechanical loading, using a complementary energy approach. Comput. Mech. 16, 83–97 (1995)

    Article  MATH  Google Scholar 

  26. Krishna Murty A.V., Hari Kumar H.K.: Modelling of symmetric laminates under extension. Compos. Struct. 11, 15–32 (1989)

    Article  Google Scholar 

  27. Lekhnitskii S.G.: Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San Francisco (1963)

    MATH  Google Scholar 

  28. Lessard L.B., Schmidt A.S., Shokrieh M.M.: Three-dimensional stress analysis of free-edge effects in a simple composite cross-ply laminate. Int. J. Solids Struct. 33, 2243–2259 (1996)

    Article  MATH  Google Scholar 

  29. Liang W.Y., Tseng W.D., Tarn J.Q.: Exact analysis of stress fields in composite laminates under extension. J. Mech. 30, 477–489 (2014)

    Article  Google Scholar 

  30. Lindemann J., Becker W.: Analysis of the free-edge effect in composite laminates by the boundary finite element method. Mech. Compos. Mater. 36, 207–214 (2000)

    Article  MATH  Google Scholar 

  31. Lovinger Z., Frostig Y.: High order behavior of sandwich plates with free edges-edge effects. Int. J. Solids Struct. 41, 979–1004 (2004)

    Article  MATH  Google Scholar 

  32. Mittelstedt C., Becker W.: Interlaminar stress concentrations in layered structures: Part I-A selective literature survey on the free-edge effect since 1967. J. Compos. Mater. 38, 1037–1062 (2004)

    Article  Google Scholar 

  33. Mittelstedt C., Becker W.: Free-edge effects in composite laminates. Appl. Mechan. Rev. 60, 217–244 (2007)

    Article  Google Scholar 

  34. Nosier A., Bahrami A.: Free edge stresses in antisymmetric angle-ply laminates in extension and torsion. Int. J. Solids Struct. 43, 6800–6816 (2006)

    Article  MATH  Google Scholar 

  35. Nosier A., Bahrami A.: Interlaminar stresses in antisymmetric angle-ply laminates. Compos. Struct. 78, 18–33 (2007)

    Article  Google Scholar 

  36. Ottavio M.D., Vidal P., Valot E., Polit O.: Assessment of plate theories for free-edge effects. Compos. Part B 48, 111–121 (2013)

    Article  Google Scholar 

  37. Pagano N.J.: Free edge stress fields in composite laminates. Int. J. Solids Struct. 14, 401–406 (1978)

    Article  MATH  Google Scholar 

  38. Pagano N.J.: Stress fields in composite laminates. Int. J. Solids Struct. 14, 385–400 (1978)

    Article  MATH  Google Scholar 

  39. Phillips E.A., Herakovich C.T., Graham L.L.: Damage development in composites with large stress gradients. Compos. Sci. Technol. 61, 2169–2182 (2001)

    Article  Google Scholar 

  40. Pipes R.B., Pagano N.J.: Interlaminar stresses in composite laminates under uniform axial extension. J. Compos. Mater. 4, 538–548 (1970)

    Article  Google Scholar 

  41. Puppo A.H., Evensen H.A.: Interlaminar shear in laminated composites under generalized plane stress. J. Compos. Mater. 4, 204–220 (1970)

    Article  Google Scholar 

  42. Raju I.S., Crews J.H.: Interlaminar stress singularities at a straight free edge in composite laminates. Comput. Struct. 14, 21–28 (1981)

    Article  Google Scholar 

  43. Salamon N.J.: Interlaminar stresses in a layered composite laminate in bending. Fiber Sci. Technol. 11, 305–317 (1978)

    Article  Google Scholar 

  44. Sandhu, R.S., Wolfe, W.E., Sierakowski, R.L., Chang, C.C., Chu, H.R.: Finite element analysis of free-edge delamination in laminated composite specimens. U.S. Air Force Wright Laboratory report, WL–TR–91–3022 (1991)

  45. Sarvestani H.Y., Naghashpour A.: Analysis of free edge stresses in composite laminates using higher order theories. Indian J. Mat. Sci. 253018, 1–15 (2014)

    Google Scholar 

  46. Shames I.H., Dym C.L.: Energy and Finite Element Methods in Structural Mechanics. Hemisphere Publishing, New York (1985)

    MATH  Google Scholar 

  47. Stolarski H.K., Chiang M.Y.M.: On the significance of the logarithmic term in the free edge stress singularity of composite laminates. Int. J. Solids Struct. 25, 75–93 (1989)

    Article  MATH  Google Scholar 

  48. Tahani M., Nosier A.: Edge effects of uniformly loaded cross-ply composite laminates. Mater. Des. 24, 647–658 (2003)

    Article  Google Scholar 

  49. Tahani M., Nosier A.: Free edge stress analysis of general cross-ply composite laminates under extension and thermal loading. Compos. Struct. 60, 91–103 (2003)

    Article  Google Scholar 

  50. Tian Z., Zhao F., Yang Q.: Straight free-edge effects in laminated composites. Finite Elem Anal Des 41, 1–14 (2004)

    Article  Google Scholar 

  51. Tong P., Pian T.H.H.: On the convergence of the finite element method for problems with singularity. Int. J. Solids Struct. 9, 313–321 (1973)

    Article  MATH  Google Scholar 

  52. Vidal P., Gallimard L., Polit O.: Assessment of variable separation for finite element modeling of free edge effect for composite plates. Compos. Struct. 123, 19–29 (2015)

    Article  Google Scholar 

  53. Wang A.S.D., Crossman F.W.: Edge effects on thermally induced stresses in composite laminates. J. Compos. Mater. 11, 300–312 (1977)

    Article  Google Scholar 

  54. Wang A.S.D., Crossman F.W.: Some new results on edge effect in symmetric composite laminates. J. Compos. Mater. 11, 92–106 (1977)

    Article  Google Scholar 

  55. Wang S.S., Yuan F.G.: A singular hybrid finite element analysis of boundary-layer stresses in composite laminates. Int. J. Solids Struct. 19, 825–837 (1983)

    Article  MATH  Google Scholar 

  56. Yin W.L.: Free-edge effects in anisotropic laminates under extension, bending and twisting, Part I :A stress-function-based variational approach. Trans. ASME 61, 410–415 (1994)

    Article  MATH  Google Scholar 

  57. Yin W.L.: Free-edge effects in anisotropic laminates under extension, bending and twisting, Part II: Eigenfunction analysis and the results for symmetric laminates. Trans. ASME 61, 416–421 (1994)

    Article  Google Scholar 

  58. Yin W.L.: The effect of temperature gradient on the free-edge interlaminar stresses in multi-layered structures. J. Compos. Mater. 31, 2460–2477 (1997)

    Article  Google Scholar 

  59. Zhang D., Ye J.Q., Sheng H.Y.: Free-edge and ply cracking effect in cross-ply laminated composites under uniform extension and thermal loading. Compos. Struct. 76, 314–325 (2006)

    Article  Google Scholar 

  60. Zhang D., Ye J.Q., Sheng H.Y.: Free-edge and ply cracking effect in angle-ply laminated composites subjected to in plane loads. J. Eng. Mechan. ASCE 133, 1268–1277 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kapuria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanesh, N., Kapuria, S. & Achary, G.G.S. Accurate prediction of three-dimensional free edge stress field in composite laminates using mixed-field multiterm extended Kantorovich method. Acta Mech 228, 2895–2919 (2017). https://doi.org/10.1007/s00707-015-1522-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1522-0

Keywords

Navigation