Skip to main content
Log in

Stokes resistance of a porous spherical particle in a spherical cavity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The boundary effect on the asymmetrical motion of a porous spherical particle in an eccentric spherical cavity is investigated in the quasi-steady limit under creeping flow conditions. The porous particle translates and rotates in the viscous fluid, located within the spherical cavity, normal to the line connecting their centers. The fluid inside the porous particle is governed by the Brinkman equation. A tangential stress jump condition at the interface between the fluid and the porous particle is applied. A semi-analytical approach based on a collocation technique is used. Due to the linearity of the present problem, the flow variables for the clear fluid region are constructed by superposing basic solutions of two problems: the first one is the regular solution inside the cavity region in the absence of the porous particle where a first system of coordinates has its origin at the center of the cavity, while the second problem is the regular solution in the infinite region outside the spherical porous particle where a second coordinate system with its origin at the center of the porous particle is used. Numerical results displaying the resistance coefficients acting on the particle are obtained with good convergence for various values of the physical parameters of the problem. The results are tabulated and represented graphically. The findings demonstrate that the collocation results of the resistance coefficients are in good agreement with the corresponding results for the impermeable solid particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinbaum S.: Whitaker distinguished lecture: models to solve mysteries in biomechanics at the cellular level; a new view of fiber matrix layers. Ann. Biomed. Eng. 26, 627–643 (1998)

    Article  Google Scholar 

  2. Bear J.: Dynamics of Fluids in Porous Media. Dover, New York (1988)

    MATH  Google Scholar 

  3. Ehlers W., Bluhm J.: Porous Media: Theory, Experiments and Numerical Applications. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  4. Khaled A.-R.A., Vafai K.: The role of porous media on modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46, 4989–5003 (2003)

    Article  MATH  Google Scholar 

  5. Joseph D.D., Nield D.A., Papanicolaou G.: Nonlinear equation governing flow in a saturated porous medium. Water Resour. Res. 18, 1049–1052 (1982)

    Article  Google Scholar 

  6. Kladias N., Prasad V.: Experimental verification of Darcy–Brinkman–Forchheimer flow model for natural convection in porous media. J. Thermophys. Heat Transf. 5, 560–576 (1991)

    Article  Google Scholar 

  7. Vafai K., Kim S.J.: Fluid mechanics of the interface region between a porous medium and a fluid layer—an exact solution. Int. J. Heat Fluid Flow 11, 254–256 (1990)

    Article  Google Scholar 

  8. Nield D.A.: The limitations of the Brinkman–Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int. J. Heat Fluid Flow 12, 269–272 (1991)

    Article  Google Scholar 

  9. Vafai K.: Handbook of Porous Media, 2nd edn. Taylor & Francis, New York (2005)

    Book  MATH  Google Scholar 

  10. Nabovati A., Llewellin E.W., Sousa A.C.M.: A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Compos. A 40, 860–869 (2009)

    Article  Google Scholar 

  11. Brinkman H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)

    MATH  Google Scholar 

  12. Brinkman H.C.: On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A1, 81–86 (1947)

    Google Scholar 

  13. Beavers G.S., Joseph D.D.: Boundary conditions at naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  14. Joseph D.D., Tao L.N.: The effect of permeability on the slow motion of a porous sphere in a viscous liquid. Angew. Math. Mech. 44, 361–364 (1964)

    Article  MATH  Google Scholar 

  15. Ooms G., Mijnlieff P.F., Beckers H.: Friction force exerted by a flowing fluid on a permeable particle, with particular reference to polymer coils. J. Chem. Phys. 53, 4123–4130 (1970)

    Article  Google Scholar 

  16. Neale G., Epstein M., Nader W.: Creeping flow relative to permeable spheres. Chem. Eng. Sci. 28, 1865–1874 (1973)

    Article  Google Scholar 

  17. Durlofsky L., Brady J.F.: Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30, 3329–3341 (1987)

    Article  MATH  Google Scholar 

  18. Phillips R.J., Deen W.M., Brady J.F.: Hindered transport of spherical macromolecules in fibrous membranes and gels. AIChE J. 35, 1761–1769 (1989)

    Article  Google Scholar 

  19. Phillips R.J., Deen W.M., Brady J.F.: Hindered transport in fibrous membranes and gels: effect of solute size and fiber configuration. J. Colloid Interface Sci. 139, 363–373 (1990)

    Article  Google Scholar 

  20. Chen S.B.: Axisymmetric motion of multiple composite spheres: solid core with permeable shell, under creeping flow condition. Phys. Fluids 10, 1550–1563 (1998)

    Article  Google Scholar 

  21. Auriault J.-L.: On the domain of validity of Brinkman’s equation. Transp. Porous Med. 79, 215–223 (2009)

    Article  MathSciNet  Google Scholar 

  22. Koplik J., Levine H., Zee A.: Viscosity renormalization in the Brinkman equation. Phys. Fluids 26, 2864–2870 (1983)

    Article  MATH  Google Scholar 

  23. Adler P.M., Mills P.M.: Motion and rupture of a porous sphere in a linear flow field. J. Rheol. 23, 25–37 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Einstein A.: Investigations on the Theory of the Brownian Movement. Dover, New York (1956)

    MATH  Google Scholar 

  25. Lundgren T.S.: Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273–299 (1972)

    Article  MATH  Google Scholar 

  26. Freed K.F., Muthukumar M.: On the Stokes problem for a suspension of spheres at finite concentrations. J. Chem. Phys. 68, 2088–2096 (1978)

    Article  Google Scholar 

  27. Sherwood J.D.: Cell models for suspension viscosity. Chem. Eng. Sci. 61, 6727–6731 (2006)

    Article  Google Scholar 

  28. Kim S., Russel W.B.: Modelling of porous media by renormalization of the Stokes equations. J. Fluid Mech. 154, 269–286 (1985)

    Article  MATH  Google Scholar 

  29. Happel J., Brenner H.: Low Reynolds Number Hydrodynamics. Martinus Nijoff, The Hague (1983)

    MATH  Google Scholar 

  30. Neale G.H., Nader W.K.: Prediction of transport processes within porous media: creeping flow relative to a fixed swarm of spherical particles. AIChE J. 20, 530–538 (1974)

    Article  Google Scholar 

  31. Saffman P.G.: On the settling speed of free and fixed suspensions. Stud. Appl. Math. 52, 115–127 (1973)

    Article  MATH  Google Scholar 

  32. Martys N., Bentz D.P., Garboczi E.J.: Computer simulation study of the effective viscosity in Brinkman’s equation. Phys. Fluids 6, 1434–1439 (1994)

    Article  MATH  Google Scholar 

  33. Larson R.E., Higdon J.J.L.: Microscopic flow near the surface of two-dimensional porous media. Part I: axial flow. J. Fluid Mech. 166, 449–472 (1986)

    Article  MATH  Google Scholar 

  34. Larson R.E., Higdon J.J.L.: Microscopic flow near the surface of two-dimensional porous media. Part II: transverse flow. J. Fluid Mech. 178, 119–136 (1987)

    Article  MATH  Google Scholar 

  35. Kolodziej J.A.: Influence of the porosity of a porous medium on the effective viscosity in Brinkman’s filtration equation. Acta Mech. 75, 241–254 (1988)

    Article  Google Scholar 

  36. Neale G., Nader W.: Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Eng. 52, 475–478 (1974)

    Article  Google Scholar 

  37. Poulikakos D., Kazmierczac M.: Forced convection in a duct partially filled with a porous material. J. Heat Transf. 109, 653–662 (1987)

    Article  Google Scholar 

  38. Sahraoui M., Kaviany M.: Slip and no-slip velocity boundary conditions at the surface of porous, plain media. Int. J. Heat Mass Transf. 35, 927–943 (1992)

    Article  MATH  Google Scholar 

  39. Gartling D., Hickox C., Givler R.: Simulation of coupled viscous and porous flow problems. Comput. Fluid Dyn. 7, 23–48 (1996)

    Article  MATH  Google Scholar 

  40. James D.F., Davis A.M.J.: Flow at the interface of a model fibrous porous medium. J. Fluid Mech. 426, 47–72 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ochoa-Tapia J.A., Whittaker S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid I: theoretical development, II: comparison with experiment. Int. J. Heat Mass Transf. 38, 2635–2655 (1995)

    Article  MATH  Google Scholar 

  42. Ochoa-Tapia J.A., Whittaker S.: Momentum jump condition at the boundary between a porous medium and a homogenous fluid: inertial effects. J. Porous Media 1, 201–207 (1998)

    MATH  Google Scholar 

  43. Valdes-Parada F.J., Goyeau B., Ramirez J.A., Ochoa-Tapia J.A.: Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Transp. Porous Med. 78, 439–457 (2009)

    Article  Google Scholar 

  44. Tan, H., Chen, X., Pillai, K.M., Papathanasiou, T.D.: Evaluation of boundary conditions at the clear-fluid and porous-medium interface using the boundary element method. In: Proceedings of In the 9th International Conference on Flow Processes in Composite Materials, Montréal (Québec), Canada, 8–10 July (2008)

  45. Tan H., Pillai K.M.: Finite element implementation of stress-jump and stress-continuity conditions at porous-medium, clear-fluid interface. Comput. Fluids 38, 1118–1131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Prakash J., Raja Sekhar G.P., Kohr M.: Stokes flow of an assemblage of porous particles: stress jump condition. Z. Angew. Math. Phys. 62, 1027–1046 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Saad E.I.: Stokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: effect of stress jump condition. Meccanica 48, 1747–1759 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Saad E.I., Faltas M.S.: Slow motion of a porous sphere translating along the axis of a circular cylindrical pore subject to a stress jump condition. Transp. Porous Media 102, 91–109 (2014)

    Article  MathSciNet  Google Scholar 

  49. Jeffery G.B.: On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. 14, 327–338 (1915)

    Article  MATH  Google Scholar 

  50. Stimson M., Jeffery G.B.: The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A 111, 110–116 (1926)

    Article  MATH  Google Scholar 

  51. Reed L.D., Morrison F.A.: Particle interactions in viscous flow at small values of Knudsen number. J. Aerosol Sci. 5, 175–189 (1974)

    Article  Google Scholar 

  52. Chen S.H., Keh H.J.: Axisymmetric motion of two spherical particles with slip surfaces. J. Colloid Interface Sci. 171, 63–72 (1995)

    Article  Google Scholar 

  53. Lu S.Y., Lee C.T.: Creeping motion of a spherical aerosol particle in a cylindrical pore. Chem. Eng. Sci. 57, 1479–1484 (2002)

    Article  Google Scholar 

  54. Chen S.B.: Drag force of a particle moving axisymmetrically in open or closed cavities. J. Chem. Phys. 135, 014904 (2011)

    Article  Google Scholar 

  55. Feng J., Ganatos P., Weinbaum S.: Motion of a sphere near planar confining boundaries in a Brinkman medium. J. Fluid Mech. 375, 265–296 (1998)

    Article  MATH  Google Scholar 

  56. Pozrikidis C.: The motion of particles in the Hele-Shaw cell. J. Fluid Mech. 261, 199–222 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  57. Felderhof B.U., Sellier A.: Mobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cell. J. Chem. Phys. 136, 054703 (2012)

    Article  Google Scholar 

  58. Lee T.C., Keh H.J.: Slow motion of a spherical particle in a spherical cavity with slip surfaces. Int. J. Eng. Sci. 69, 1–15 (2013)

    Article  MathSciNet  Google Scholar 

  59. Lee T.C., Keh H.J.: Creeping motion of a fluid drop inside a spherical cavity. Eur. J. Mech. B/Fluids 34, 97–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Lee T.C., Keh H.J.: Thermocapillary motion of a spherical drop in a spherical cavity. CMES 93, 317–333 (2013)

    MathSciNet  Google Scholar 

  61. Saad, E.I.: Axisymmetric motion of a porous sphere through a spherical envelope subject to a stress jump condition. Meccanica (2015). doi:10.1007/s11012-015-0239-4

  62. Faltas M.S., Saad E.I.: Slow motion of a porous eccentric spherical particle-in-cell models. Transp. Porous. Media 95, 133–150 (2012)

    Article  MathSciNet  Google Scholar 

  63. Gluckman M.J., Pfeffer R., Weinbaum S.: A new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroids. J. Fluid Mech. 50, 705–740 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ganatos P., Weinbaum S., Pfeffer R.: A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motion. J. Fluid Mech. 99, 739–753 (1980)

    Article  MATH  Google Scholar 

  65. Goldman A.J., Cox R.G., Brenner H.: Slow viscous motion of a sphere parallel to a plane. I: motion through a quiescent fluid. Chem. Eng. Sci. 22, 637–651 (1967)

    Article  Google Scholar 

  66. Sangani A.S., Behl S.: The planar singular solutions of Stokes and Laplace equations and their application to transport processes near porous surfaces. Phys. Fluids A1, 21–37 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Saad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherief, H.H., Faltas, M.S. & Saad, E.I. Stokes resistance of a porous spherical particle in a spherical cavity. Acta Mech 227, 1075–1093 (2016). https://doi.org/10.1007/s00707-015-1506-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1506-0

Keywords

Navigation