Skip to main content
Log in

Heterogeneously resistant elastic–brittle solids under multi-axial stress: fundamental postulates and bounding theorems

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The paper focuses on the problem of developing a reliable theoretical model for representing the bodies that exhibit a heterogeneous mechanical behaviour in tension and in compression. The proposed phenomenological model is characterized by an evolutionary tensile strength that is ruled by a decay law depending on the loading path. Such model is of particular interest, since it may be successfully employed, after suitable calibration of the tensile strength, for managing a class of materials that includes masonry bodies. In the paper, the fundamental postulates under multi-axial stress states are formulated and proved to hold at any stage of the loading path. The relationships of the solution of the introduced elastic–brittle model with solutions relevant to other more standard and well-behaved mechanical models are analytically investigated. Finally, two original theorems are enounced that allow to identify some upper and lower bounds on the solution, in energy terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heyman J.: The stone skeleton. J. Solids Struct. 2, 249–279 (1966)

    Article  Google Scholar 

  2. Kooharian A.: Limit analysis of voussoir (segmental) and concrete arches. J. Am. Concrete Inst. 24, 317–328 (1952)

    Google Scholar 

  3. Khludnev, A.M., Kovtunenko V.A.: Analysis of cracks in solids. International series on advances in fracture mechanics 6, p. 408. WIT-Press, Southampton, Boston (2000)

  4. Del Piero G.: Constitutive equation and compatibility of the external loads for linear-elastic masonry materials. Meccanica 24, 150–162 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baratta A., Corbi O.: An approach to masonry structural analysis by the no-tension assumption—Part II: Load singularities, numerical implementation and applications. Appl. Mech. Rev. ASME Int. 63, 040803-1/21 ISSN 0003-6900 (2010). doi:10.1115/1.4002791

  6. Baratta A., Corbi O.: On the statics of no-tension masonry-like vaults and shells: solution domains, operative treatment and numerical validation. Ann. Solid Struct. Mech. 2, 107–122 ISSN 1867-6936 (2011). doi:10.1007/s12356-011-0022-8

  7. Andreu, A., Gil, L., Roca, P.: Limit analysis of masonry constructions by 3D funicular modeling. In: Lourenço P.B., et al. (eds.) Structural analysis of historical constructions, pp 1135–1142. MacMillan, New Deli (2006)

  8. Bazant Z.P., Li Y.N.: Stability of cohesive crack model: Part I: Energy principles. J. Appl. Mech. 62, 959–964 (1995)

    Article  MATH  Google Scholar 

  9. Corbi O., Candela M.: About the structural restoration of the S. Domenico’s monastery in Naples. Int. J. Mech. 7, 393–400 (2013)

    Google Scholar 

  10. Gilbert, M.: Limit analysis applied to masonry arch bridges: state-of-the-art and recent developments. In: Arch Bridges ‘07, Funchal, Madeira, pp. 13–28 (2007)

  11. Lemos, J. : Assessment of the ultimate load of a masonry arch using discrete elements. In: Middleton, J., Pande, G.N. (eds.) Computer, methods in structural masonry, pp. 294–302. Books & Journals International, Swansea (1995)

  12. Lucchesi M., Padovani C., Pasquinelli G., Zani N.: Statics of masonry vaults, constitutive model and numerical analysis. J. Mech. Mater. Struct. 2, 221–244 (2007)

    Article  Google Scholar 

  13. Pietruszczak S., Ushaksaraei R.: Description of inelastic behaviour of structural masonry. Int. J. Solids Struct. 40, 4003–4019 (2003). doi:10.1016/S0020-7683(03)00174-4

    Article  MATH  Google Scholar 

  14. Roca P., Cervera M., Gariup G., Pela L.: Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch. Comput. Methods Eng. 17, 299–325 (2010)

    Article  MATH  Google Scholar 

  15. Baratta A., Corbi O.: Contribution of the fill to the static behaviour of arched masonry structures: theoretical formulation. Acta Mech. 225, 53–66 (2014). doi:10.1007/s00707-013-0935-x

    Article  MATH  MathSciNet  Google Scholar 

  16. Baratta A., Corbi I.: Equilibrium models for helicoidal laterally supported staircases. Int. J. Comput. Struct. 124, 21–28 (2013). doi:10.1016/j.compstruc.2012.11.007

    Article  Google Scholar 

  17. Baratta A., Corbi I.: Statics and equilibrium paths of masonry stairs. Open Constr. Build. Technol. J. 6, 368–372 ISSN: 1874-8368 (2012). doi:10.2174/1874836801206010368

  18. Baratta A., Corbi I.: Topology optimization for reinforcement of no-tension structures. Acta Mech. 225, 663–678 (2014). doi:10.1007/s00707-013-0987-y

    Article  MATH  MathSciNet  Google Scholar 

  19. Furtmüller T., Adam C.: Numerical modeling of the in-plane behavior of historical brick masonry walls. Acta Mech. 221, 65–77 (2011). doi:10.1007/s00707-011-0493-z

    Article  MATH  Google Scholar 

  20. Elmalich D., Rabinovitch O.: Nonlinear analysis of masonry arches strengthened with composite materials. J. Eng. Mech. 136, 996–1005 (2010). doi:10.1061/(ASCE)EM.1943-7889.0000140

    Article  Google Scholar 

  21. D’Ambrisi A., Feo L., Focacci F.: Masonry arches strengthened with composite unbonded tendons. J. Compos. Struct. 98, 323–329 (2013). doi:10.1016/j.compstruct.2012.10.040

    Article  Google Scholar 

  22. Corbi I.: FRP reinforcement of masonry panels by means of C-fiber strips. Compos. B Eng. 47, 348–356 ISSN: 13598368 (2013). doi:10.1016/j.compositesb.2012.11.005t

  23. Baratta, A., Corbi, I., Corbi, O.: Bounds on the elastic brittle solution in bodies reinforced with FRP/FRCM composite provisions. Compos. Part B Eng. 68, 230–236 (2014). doi:10.1016/j.compositesb.2014.07.027

  24. Corbi O., Zaghw A.H., Elattar A., Saleh A.: Preservation provisions for the environmental protection of Egyptian monuments subject to structural vibrations. Int. J. Mech. 7, 172–179 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Baratta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baratta, A., Corbi, O. Heterogeneously resistant elastic–brittle solids under multi-axial stress: fundamental postulates and bounding theorems. Acta Mech 226, 2077–2087 (2015). https://doi.org/10.1007/s00707-015-1299-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1299-1

Keywords

Navigation