Skip to main content
Log in

A multiscale strategy for thermo-elastic plastic stress analysis of heterogeneous multiphase materials

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A multiscale strategy is developed for the thermo-elastic plastic stress analysis of heterogeneous multiphase materials. The strategy is based on the extended multiscale finite element method (EMsFEM) and the enriched partition of unity approach. In the formulation, the enriched numerical base functions are adapted into the EMsFEM, which show good applicability to the local deformation pattern. Thus, the microscopic variable fields can be reproduced precisely, which are crucial for the nonlinear analysis. Numerical examples of two-phase heterogeneous media with regular and irregular microstructures demonstrate the validity and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, London (1993)

    MATH  Google Scholar 

  2. Hsu T.R.: The Finite Element Method in Thermomechanics, pp. 65–67. Allen & Unwin, Boston (1986)

    Book  Google Scholar 

  3. Wang M., Pan N.: Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R 63, 1–30 (2008)

    Article  Google Scholar 

  4. Kanoute P., Boso D.P., Chaboche J.L., Schrefler B.A.: Multiscale methods for composites: a review. Arch. Comput. Methods Eng. 16, 31–75 (2009)

    Article  MATH  Google Scholar 

  5. Weinan E., Engquist B., Li X., Ren W., Vanden-Eijnden E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2, 367–450 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Eshelby J.D.: The determination of the field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hill R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  8. Hashin Z., Shtrikman S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ibrahimbegovic A., Markovic D.: Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures. Comput. Methods Appl. Mech. Eng. 192, 3089–3107 (2003)

    Article  MATH  Google Scholar 

  10. Miehe C., Bayreuther C.G.: On multiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers. Int. J. Numer. Methods Eng. 71, 1135–1180 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bensoussan A., Lions J.L., Papanicolau G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  12. Alzina A., Toussaint E., Béakou A.: Multiscale modeling of the thermoelastic behavior of braided fabric composites for cryogenic structures. Int. J. Solids Struct. 44, 6842–6859 (2007)

    Article  MATH  Google Scholar 

  13. Zhang H.W., Zhang S., Bi J.Y., Schrefler B.A.: Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. Int. J. Numer. Methods Eng. 69, 87–113 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kouznetsova, V.: Computational homogenization for the multi-scale analysis of multi-phase materials. Ph.D. thesis, Eindhoven University of Technology, The Netherlands: Eindhoven (2002)

  15. Özdemir I., Brekelmans W., Geers M.: \({{\rm FE}^{2}}\) computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput. Methods Appl. Mech. Eng. 198, 602–613 (2008)

    Article  MATH  Google Scholar 

  16. Suquet P.M.: Local and global aspects in the mathematical theory of plasticity. In: Sawczuk, A., Bianchi, G. (eds) Plasticity Today: Modelling, Methods and Applications, pp. 279–310. Elsevier Applied Science Publishers, London (1985)

  17. Terada, K., Kikuchi, N.: Nonlinear homogenization method for practical applications. In: Ghosh, S., Ostoja-Starzewski M. (eds.) Comput. Methods Micromech., ASME, AMD, vol. 212, pp. 1–16 (1995)

  18. Smit R.J.M., Brekelmans W.A.M., Meijer H.E.H.: Prediction of the mechanical behaviour of non-linear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng. 155, 181–192 (1998)

    Article  MATH  Google Scholar 

  19. Feyel F., Chaboche J.L.: \({{\rm FE}^{2}}\) multiscale approach for modeling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183, 309–330 (2000)

    Article  MATH  Google Scholar 

  20. Matsui K., Terada K., Yuge K.: Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Comput. Struct. 82, 593–606 (2004)

    Article  Google Scholar 

  21. Lee K., Moorthy S., Ghosh S.: Multiple scale computational model for damage in composite materials. Comput. Methods Appl. Mech. Eng. 172, 175–201 (1999)

    Article  MATH  Google Scholar 

  22. Fish J., Yu O., Shek K.: Computational damage mechanics for composite materials based on mathematical homogenization. Int. J. Numer. Methods Eng. 45, 1657–1679 (1999)

    Article  MATH  Google Scholar 

  23. Jain J.R., Ghosh S.: Damage evolution in composites with a homogenization based continuum damage mechanics model. Int. J. Damage Mech. 18, 533–568 (2009)

    Article  Google Scholar 

  24. Markovic D., Niekamp R., Ibrahimbegovic A., Matthies H.G., Taylor R.L.: Multi-scale modeling of heterogeneous structures with inelastic constitutive behavior. Part I: Mathematical and physical aspects. Int. J. Eng. Comput. 22, 664–683 (2005)

    MATH  Google Scholar 

  25. Hautefeuille M., Colliat J.B., Ibrahimbegovic A., Matthies H., Villon P.: A multi-scale approach to model localized failure with softening. Comput. Struct. 94–95, 83–95 (2012)

    Article  Google Scholar 

  26. Zhang H.W., Wu J.K., Fu Z.D.: Extended multiscale finite element method for mechanical analysis of periodic lattice truss materials. Int. J. Multisc. Comput. 8, 597–613 (2010)

    Article  Google Scholar 

  27. Zhang H.W., Wu J.K., Lü J., Fu Z.D.: Extended multiscale finite element method for mechanical analysis of heterogeneous materials. Acta Mech. Sin. 26, 899–920 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Babuška I., Osborn E.: Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Babuška I., Caloz G., Osborn E.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hou T.Y., Wu X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Efendiev Y., Hou T., Ginting V.: Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2, 553–589 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Efendiev Y., Hou T.Y.: Multiscale Finite Element Methods: Theory and Applications. Springer, New York (2009)

    Google Scholar 

  33. Zhang H.W., Liu Y., Zhang S., Tao J., Wu J.K., Chen B.S.: Extended multiscale finite element method: its basic and applications for mechanical analysis of heterogeneous materials. Comput. Mech. 53, 659–685 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  34. Liu H., Zhang H.W.: A uniform multiscale method for 3D static and dynamic analyses of heterogeneous materials. Comput. Math. Sci. 79, 159–173 (2013)

    Article  Google Scholar 

  35. Zhang H.W., Wu J.K., Fu Z.D.: Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials. Comput. Mech. 45, 623–635 (2010)

    Article  MATH  Google Scholar 

  36. Zhang H.W., Wu J.K., Lü J.: A new multiscale computational method for elasto-plastic analysis of heterogeneous materials. Comput. Mech. 49, 149–469 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zhang S., Yang D.S., Zhang H.W., Zheng Y.G.: Coupling extended multiscale finite element method for thermoelastic analysis of heterogeneous multiphase materials. Comput. Struct. 121, 32–49 (2013)

    Article  Google Scholar 

  38. Ngo V.M., Ibrahimbegovic A., Brancherie D.: Model for localized failure with thermo-plastic coupling: theoretical formulation and ED-FEM implementation. Comput. Struct. 127, 2–18 (2013)

    Article  Google Scholar 

  39. Melenk J.M., Babuška I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996)

    Article  MATH  Google Scholar 

  40. Duarte C.A., Babuška I., Oden J.T.: Generalized finite element methods for three-dimensional structural mechanics problems. Comput. Struct. 77, 215–232 (2000)

    Article  Google Scholar 

  41. Strouboulis T., Copps K., Babuška I.: The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190, 4081–4193 (2001)

    Article  MATH  Google Scholar 

  42. Macri M., Littlefield A.: Enrichment based multiscale modeling for thermo-stress analysis of heterogeneous material. Int. J. Numer. Methods Eng. 93, 1147–1169 (2013)

    Article  MathSciNet  Google Scholar 

  43. Duarte C.A., Kim D.J.: Analysis and applications of a generalized finite element method with global-local enrichment functions. Comput. Methods Appl. Mech. Eng. 197, 487–504 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. O’Hara P., Duarte C.A., Eason T.: Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients. Comput. Methods Appl. Mech. Eng. 198, 1857–1871 (2009)

    Article  MATH  Google Scholar 

  45. DeSouza Neto E.A., Peric’ D., Owen D.R.J.: Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester (2008)

    Book  Google Scholar 

  46. Simo J.C., Hughes T.J.R.: Computational Inelasticity. Springer, Berlin (1998)

    MATH  Google Scholar 

  47. Vel S.S., Goupee A.J.: Multiscale thermoelastic analysis of random heterogeneous materials. Part I: Microstructure characterization and homogenization of material properties. Comput. Mater. Sci. 48, 22–38 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D.S., Zhang, H.W., Zhang, S. et al. A multiscale strategy for thermo-elastic plastic stress analysis of heterogeneous multiphase materials. Acta Mech 226, 1549–1569 (2015). https://doi.org/10.1007/s00707-014-1269-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1269-z

Keywords

Navigation