Skip to main content
Log in

Ferroconvection in a porous medium with vertical throughflow

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The problem of thermal convection in a horizontal layer of ferrofluid-saturated porous medium is investigated theoretically in the presence of a uniform vertical magnetic field and throughflow. The flow in the porous medium is described by the modified Brinkman equation with fluid viscosity different from effective viscosity. The rigid, however permeable ferromagnetic boundaries are considered to be insulated to temperature perturbations. The resulting eigenvalue problem is solved both numerically using the Galerkin technique and analytically using regular perturbation technique with wave number a as a perturbation parameter and observed that the results complement with each other. The direction of throughflow has no influence on the stability characteristics of the system, and the effect of throughflow-dependent Peclet number Q is to delay the onset of ferroconvection. The Prandtl number Pr(>1) has insignificant while the nonlinearity of fluid magnetization parameter M 3 has no influence on the onset of ferroconvection. Besides, an increase in the value of the Darcy number Da and the magnetic number M 1 is to hasten, while an increase in the ratio of viscosity parameter λ is to delay the onset of ferroconvection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosensweig R.E.: Ferrohydrodynamics. Cambridge University Press, London (1985)

    Google Scholar 

  2. Raj K., Moskowitz R.: Commercial applications of ferrofluids. J Magn. Magn. Mater. 16, 233–245 (2004)

    Google Scholar 

  3. Blums E., Cebers A., Maiorov M.M.: Magnetic Fluids. deGruyter, New York (1997)

    Google Scholar 

  4. Finlayson B.A.: Convective instability of ferromagnetic fluids. J. Fluid Mech. 40, 753–767 (1970)

    Article  MATH  Google Scholar 

  5. Lalas D.P., Carmi S.: Thermoconvective stability of ferrofluids. Phys. Fluids 4, 436–437 (1971)

    Article  Google Scholar 

  6. Shliomis M.I.: Magnetic fluids. Sov. Phys. Uspekhi 17, 153–169 (1974)

    Article  Google Scholar 

  7. Gotoh K., Yamada M.: Thermal convection in a horizontal layer of magnetic fluids. J. Phys. Soc. Jpn. 51, 3042–3048 (1982)

    Article  Google Scholar 

  8. Blennerhassett P.J., Lin F., Stiles P.J.: Heat transfer through strongly magnetized ferrofluids. Proc. R. Soc, A Math. Phys. Eng. Sci. 433, 165–177 (1991)

    Article  MATH  Google Scholar 

  9. Kaloni P.N., Lou J.X.: Convective instability of magnetic fluids. Phys. Rev. E. 70, 026313–026324 (2004)

    Article  Google Scholar 

  10. Odenbach S.: Recent progress in magnetic fluid research. J. Phys. Condens. Matter 16, R1135–R1150 (2004)

    Article  Google Scholar 

  11. Ganguly R., Sen S., Puri I.K.: Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J. Magn. Magn. Mater. 271, 63–73 (2004)

    Article  Google Scholar 

  12. Nanjundappa C.E., Shivakumara I.S.: Effect of velocity and temperature boundary conditions on convective instability in a ferrofluid layer. ASME J. Heat Trans. 130, 1045021–10450215 (2008)

    Article  Google Scholar 

  13. Engler H., Odenbach S.: Parametric modulation of thermomagnetic convection in magnetic fluids. J. Phys. Condens. Matter 20, 204135-1–204135-5 (2008)

    Article  Google Scholar 

  14. Nanjundappa C.E., Shivakumara I.S., Srikumar K.: Effect of MFD viscosity on the onset of ferromagnetic fluids layer heated from below and cooled from above with constant heat flux. Meas. Sci. Rev. 9, 77–78 (2009)

    Article  Google Scholar 

  15. Shivakumara I.S., Lee J., Nanjundappa C.E.: Onset of thermogravitational convection in a ferrofluid layer with temperature dependent viscosity. ASME J. Heat Transf. 134, 0125011–0125017 (2012)

    Google Scholar 

  16. Nkurikiyimfura I., Wang Y., Pan Z.: Heat transfer enhancement by magnetic nanofluids—a review. Ren. Sustain. Energy Rev. 21, 548–561 (2013)

    Article  Google Scholar 

  17. Rosensweig R.E., Zhan M., Volger T. : Stabilization of fluid penetration through a porous medium using magnetizable fluids. In: Berkovsky, B. (eds) Thermomechanics of Magnetic Fluids, pp. 195–211. Hemisphere, Washington (1978)

  18. Zahn M., Rosensweig R.E.: Stability of magnetic fluid penetration through a porous medium with uniform magnetic field oblique to the interface. IEEE Trans. Magn. 16, 275–282 (1980)

    Article  Google Scholar 

  19. Borglin S.E., Mordis J., Oldenburg C.M.: Experimental studies of the flow of ferrofluid in porous media. Transp. Porous Media 41, 61–80 (2000)

    Article  Google Scholar 

  20. Vaidyanathan G., Sekar R., Balasubramanian R.: Ferroconvective instability of fluids saturating a porous medium. Int. J. Eng. Sci. 29, 1259–1267 (1991)

    Article  MATH  Google Scholar 

  21. Shivakumara I.S., Nanjundappa C.E., Ravisha M.: Effect of boundary conditions on the onset of thermomagnetic convection in a ferrofluid saturated porous medium. ASME J. Heat Transf. 131, 101003-1–101003-9 (2009)

    Google Scholar 

  22. Nanjundappa C.E., Shivakumara I.S., Ravisha M.: The onset of buoyancy-driven convection in a ferromagnetic fluid saturated porous medium. Meccanica 45, 213–226 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nanjundappa C.E., Shivakumara I.S., Lee J., Ravisha M.: Effect of internal heat generation on the onset of Brinkman–Bénard convection in a ferrofluid saturated porous layer. Int. J. Therm. Sci. 50, 160–168 (2011)

    Article  Google Scholar 

  24. Nanjundappa C.E., Shivakumara I.S., Prakash H.N.: Penetrative ferroconvection via internal heating in a saturated porous layer with constant heat flux at the lower boundary. J. Magn. Magn. Mater. 324, 1670–1678 (2012)

    Article  Google Scholar 

  25. Nanjundappa C.E., Savitha B., Arpitha Raju B., Shivakumara I.S.: Effect of temperature-dependent viscosity on the onset of Bénard–Marangoni ferroconvection in a ferrofluid saturated porous layer. Acta Mech. 225, 835–850 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wooding R.A.: Rayleigh instability of a thermal boundary layer in flow through a porous medium. J. Fluid Mech. 9, 183–192 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sutton F.M.: Onset of convection in a porous channel with net throughflow. Phys. Fluids 13, 1931–1934 (1970)

    Article  Google Scholar 

  28. Homsy G.M., Sherwood A.E.: Convective instabilities in porous media with throughflow. AIChE J. 22, 168–174 (1976)

    Article  Google Scholar 

  29. Jones M.C., Persichetti J.M.: Convective instability in packed beds with throughflow. AIChE J. 32, 1555–1557 (1986)

    Article  Google Scholar 

  30. Nield D.A.: Throughflow effects in the Rayleigh–Benard convective instability problem. J. Fluid Mech. 185, 353–360 (1987)

    Article  Google Scholar 

  31. Shivakumara I.S.: Boundary and inertia effects on convection in porous media with throughflow. Acta. Mech. 137, 151–165 (1999)

    Article  MATH  Google Scholar 

  32. Shivakumara I.S., Nanjundappa C.E.: Onset of convection in a sparsely packed porous layer with throughflow. Arch. Mech. 53, 219–241 (2001)

    MATH  Google Scholar 

  33. Shivakumara I.S., Nanjundappa C.E.: Effects of quadratic drag and throughflow on double diffusive convection in a porous layer. Int. Commun. Heat Mass Trans. 33, 357–363 (2006)

    Article  Google Scholar 

  34. Nield D.A., Kuznetsov A.V.: The effect of vertical throughflow on thermal instability in a porous medium layer saturated by a nanofluid. Trans. Porous Media 87, 765–775 (2011)

    Article  MathSciNet  Google Scholar 

  35. Nield D.A., Bejan A.: Convection in Porous Media, 4th edn. Springer, New York (2013)

    Book  Google Scholar 

  36. Finlayson B.A.: Method of weighted residuals and variational principles. Academic Press, New York (1972)

    MATH  Google Scholar 

  37. Auernhammera G.K., Brand H.R.: Thermal convection in a rotating layer of a magnetic fluid. Eur. Phys. J. B 16, 157–168 (2000)

    Article  Google Scholar 

  38. Givler R.C., Altobelli S.A.: A determination of effective viscosity for the Brinkmann–Forchheimer flow model. J. Fluid Mech. 258, 355–370 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Nanjundappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanjundappa, C.E., Shivakumara, I.S., Arunkumar, R. et al. Ferroconvection in a porous medium with vertical throughflow. Acta Mech 226, 1515–1528 (2015). https://doi.org/10.1007/s00707-014-1267-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1267-1

Keywords

Navigation