Skip to main content
Log in

Homogenization modeling of domain switching in ferroelectric materials

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We presented a multiscale nonlinear finite element simulation to analyze domain switching behaviors in ferroelectric materials. We utilized an incremental form of fundamental constitutive law to consider changes in the material properties caused by domain switching. A multiscale nonlinear problem was formulated by employing the asymptotic homogenization theory based on the perturbation method and implemented using finite element analysis. The developed simulation was applied to barium titanate with a Perovskite-type tetragonal crystal structure. The 90° and 180° domain switching behaviors of a single crystal were computed for verification. The nonlinear behaviors of a bulk polycrystal with virtual microstructure were analyzed as a case study. The variation of the crystal orientation distribution in the polycrystalline microstructure was analyzed to reveal its influence on macroscopic hysteresis and butterfly curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hwang S.C., Lynch C.S., McMeeking R.M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. Mater. 43, 2073–2084 (1995)

    Article  Google Scholar 

  2. Kessler H., Balke H.: On the local and average energy release in polarization switching phenomena. J. Mech. Phys. Solids 49, 953–978 (2001)

    Article  MATH  Google Scholar 

  3. Chen X., Fang D.N., Hwang K.C.: Micromechanics simulation of ferroelectric polarization switching. Acta Mater. 45, 3181–3189 (1997)

    Article  Google Scholar 

  4. Huber J.E., Fleck N.A., Landis C.M., McMeeking R.M.: A constitutive model for ferroelectric polycrystals. J. Mech. Phy. Solids 47, 1663–1697 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li J.Y.: The effective electroelastic moduli of textured piezoelectric polycrystalline aggregates. J. Mech. Phy. Solids 48, 529–552 (2000)

    Article  MATH  Google Scholar 

  6. Rödel J., Kreher W.S.: Modeling linear and nonlinear behavior of polycrystalline ferroelectric ceramics. J. Eur. Ceram. Soc. 23, 2297–2306 (2003)

    Article  Google Scholar 

  7. Kim S.J., Jiang Q.: A finite element model for rate-dependent behavior of ferroelectric ceramics. Int. J. Solids Struct. 39, 1015–1030 (2002)

    Article  MATH  Google Scholar 

  8. Li F., Fang D.: Simulations of domain switching in ferroelectrics by a three-dimensional finite element method. Mech. Mater. 36, 959–973 (2004)

    Article  Google Scholar 

  9. Kamlah M., Liskowsky A.C., McMeeking R.M., Balke H.: Finite element simulation of a polycrystalline ferroelectric based on a multidomain single crystal switching model. Int. J. Solids Struct. 42, 2949–2964 (2005)

    Article  MATH  Google Scholar 

  10. Arockiarajan A., Menzel A., Delibas B., Seemann W.: Micromechanical modeling of switching effects in piezoelectric materials a robust coupled finite element approach. J Intell. Mater. Sys. Struct. 18, 983–999 (2005)

    Article  Google Scholar 

  11. Haug A., Huber J.E., Onck P.R., Giessen E.V.: Multi-grain analysis versus self-consistent estimates of ferroelectric polycrystals. J. Mech. Phys. Solids 55, 648–665 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pathak A., McMeeking R.M.: Three-dimensional finite element simulation of ferroelectric polycrystals under electrical and mechanical loading. J. Mech. Phys. Solids 56, 663–683 (2008)

    Article  MATH  Google Scholar 

  13. Li F.X., Rajapakse R.K.N.D.: Nonlinear finite element modeling of polycrystalline ferroelectrics based on constrained domain switching. Comput. Mater. Sci. 44, 322–329 (2008)

    Article  Google Scholar 

  14. Tang W., Fang D.N., Li J.Y.: Two-scale micromechanics-based probabilistic modeling of domain switching in ferroelectric ceramics. J. Mech. Phys. Solids 57, 1683–1701 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kamlah M., Tsakmakis C.: Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics. Int. J. Solids Struct. 36, 669–695 (1999)

    Article  MATH  Google Scholar 

  16. Zhang W., Bhattacharya K.: A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Mater. 53, 185–198 (2005)

    Article  Google Scholar 

  17. Su Y., Landis C.M.: Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J. Mech. Phys. Solids 55, 280–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zheng Y., Wang B., Chung-Ho Woo C.H.: Thermodynamic modeling of nanoscale ferroelectric systems. Acta Mech. Solida Sinica 22, 524–549 (2009)

    Article  Google Scholar 

  19. Wang J., Shi S-Q., Chen L-Q., Li Y., Zhang T.Y.: Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater. 52, 749–764 (2004)

    Article  Google Scholar 

  20. Choudhury S., Li Y.L., Krill C.E., Chen L.-Q.: Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals. Acta Mater. 53, 5313–5321 (2005)

    Article  Google Scholar 

  21. Shu Y.C., Yen J.H., Chen H.Z., Li J.Y., Li L.J.: Constrained modeling of domain patterns in rhombohedral ferroelectrics. Appl. Phys. Lett. 92, 052909 (2008)

    Article  Google Scholar 

  22. Qiao H., Wang J., Chen W.: Phase field simulation of domain switching in ferroelectric single crystal with electrically permeable and impermeable cracks. Acta Mech. Solida Sinica 25, 1–8 (2012)

    Article  Google Scholar 

  23. Gudes J.M., Kikuchi N.: Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput. Method Appl. Mech. Eng. 83, 143–198 (1990)

    Article  Google Scholar 

  24. Fish J., Yu Q., Shek K.: Computational damage mechanics for composite materials based on mathematical homogenization. Int. J. Numer. Meth. Eng. 45, 1657–1679 (1999)

    Article  MATH  Google Scholar 

  25. Nelli Silva E.C., Ono Fonseca J.S., Monterode Espinosa F., Crumm A.T., Brady G.A., Halloran J.W., Kikuchi N.: Design of piezocomposite materials and piezoelectric transducers using topology optimization—part I. Arch. Comput. Methods Eng. 6, 117–182 (1999)

    Article  MathSciNet  Google Scholar 

  26. Netmat-Nasser S.: Averaging theorems in finite deformation plasticity. Mech. Mater. 31, 493–523 (1999)

    Article  Google Scholar 

  27. Ohno N., Matsuda T., Wu X.: A homogenization theory for elastic-viscoplastic composites with point symmetry of internal distributions. Int. J. Solids Struct. 38, 2867–2878 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Balasubramanian S., Anand L.: Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures. J. Mech. Phys. Solids 50, 101–126 (2002)

    Article  MATH  Google Scholar 

  29. Uetsuji Y., Nakamura Y., Ueda S., Nakamachi E.: Numerical investigation on ferroelectric properties of piezoelectric materials by a crystallographic homogenization method. Model. Simul. Mater. Sci. Eng. 12, S303–S317 (2004)

    Article  Google Scholar 

  30. Kuramae, H., Nishioka, H., Uetsuji, Y., Nakamachi, E.: Development and performance evaluation of parallel iterative method. Trans. Jpn. Soc. Comput. Eng. Sci. 20070033 (2007)

  31. Uetsuji Y., Kimura S., Kuramae H., Tsuchiya K., Kamlah M.: Multiscale finite element simulations of piezoelectric materials based on two- and three-dimensional EBSD-measured microstructures. J. Intell. Mater. Syst. Struct. 23, 563–573 (2012)

    Article  Google Scholar 

  32. Uetsuji Y., Horio M., Tsuchiya K.: Optimization of crystal microstructure in piezoelectric ceramics by multiscale finite element analysis. Acta Mater. 56, 1991–2002 (2008)

    Article  Google Scholar 

  33. Berlincourt D., Jaffe H.: Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys. Rev. 111, 143–148 (1958)

    Article  Google Scholar 

  34. Berlincourt D., Krueger H.H.A.: Domain processes in lead titanate zirconate and barium titanate ceramics. J. Appl. Phys. 30, 1804–1810 (1959)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutomo Uetsuji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uetsuji, Y., Hata, T., Kuramae, H. et al. Homogenization modeling of domain switching in ferroelectric materials. Acta Mech 225, 2969–2986 (2014). https://doi.org/10.1007/s00707-014-1199-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1199-9

Keywords

Navigation