Skip to main content

Advertisement

Log in

Ordered rate constitutive theories in Lagrangian description for thermoviscoelastic solids with memory

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents ordered rate constitutive theories in Lagrangian description for compressible as well as incompressible homogeneous, isotropic thermoviscoelastic solid matter with memory in which the material derivative of order m of the deviatoric stress tensor and heat vector are functions of temperature, temperature gradient, time derivatives of the conjugate strain tensor up to any desired order n, and the material derivatives of up to order m−1 of the stress tensor. The thermoviscoelastic solids described by these theories are called ordered thermoviscoelastic solids with memory due to the fact that the constitutive theories are dependent on orders m and n of the material derivatives of the conjugate stress and strain tensors. The highest orders of the material derivative of the conjugate stress and strain tensors define the order of the thermoviscoelastic solid. The constitutive theories derived here show that the material for which these theories are applicable have fading memory. As is well known, the second law of thermodynamics must form the basis for deriving constitutive theories for all deforming matter (to ensure thermodynamic equilibrium during evolution), since the other conservation and balance laws are independent of the constitution of the matter. The entropy inequality expressed in terms of Helmholtz free energy density \({\Phi}\) does not provide a mechanism to derive a constitutive theory for the stress tensor when its argument tensors are stress and strain rates in addition to others. With the decomposition of the stress tensor into equilibrium and deviatoric stress tensors, the constitutive theory for the equilibrium stress tensor is deterministic from the entropy inequality. However, for the deviatoric stress tensor, the entropy inequality requires a set of inequalities to be satisfied but does not provide a mechanism for deriving a constitutive theory. In the present work, we utilize the theory of generators and invariants to derive rate constitutive theories for thermoviscoelastic solids with memory. This is based on axioms and principles of continuum mechanics. However, we keep in mind that these constitutive theories must satisfy the inequalities resulting from the second law of thermodynamics. The constitutive theories for heat vector q are derived: (i) strictly using conditions resulting from the entropy inequality; (ii) using the theory of generators and invariants with admissible argument tensors that are consistent with the stress tensor as well as the theories in which simplifying assumptions are employed which yield much simplified theories. It is shown that the rate theories presented here describe thermoviscoelastic solids with memory. Mechanisms of dissipation and memory are demonstrated and discussed, and the derivation of memory modulus is presented. It is shown that simplified forms of the general theories presented here result in constitutive models that may resemble currently used constitutive models but are not the same. The work presented here is not to be viewed as extension of the current constitutive models; rather, it is a general framework for rate constitutive theories for thermoviscoelastic solids with memory based on the physics and derivations that are consistent within the framework of continuum mechanics and thermodynamics. The purpose of the simplified theories presented in the paper is to illustrate possible simplest theories within the consistent framework presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boltzmann L.: Zur Theorie der elastischen Nachwirkung. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften 70, 275–306 (1874)

    Google Scholar 

  2. Bulí M., Málek J., Rajagopal K.R.: On Kelvin–Voigt model and its generalizations. Evol. Equ. Control Theory 1(1), 17–42 (2012). doi:10.3934/eect.2012.1.17

    Article  MathSciNet  MATH  Google Scholar 

  3. Chin, R.C.Y.: Wave propagation in viscoelastic media. In: Proceedings of the International School of Physics Enrico Fermi, Physics of the Earth’s Interior, vol. 78. Varenna, Lake Como, Italy (1979)

  4. Coleman B.D.: Thermodynamics of materials with memory. Arch. Ration. Mech. Anal. 17, 1–46 (1964). doi:10.1007/BF00283864

    Google Scholar 

  5. Coleman B.D., Noll W.: On the thermostatics of continuous media. Arch. Ration. Mech. Anal. 4, 97–128 (1959). doi:10.1007/BF00281381

    Article  MathSciNet  MATH  Google Scholar 

  6. Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33, 239–249 (1961). http://rmp.aps.org/pdf/RMP/v33/i2/p239_1

  7. Cotter B.A., Rivlin R.S.: Tensors associated with time-dependent stress. Q. Appl. Math. 13, 177–182 (1955)

    MathSciNet  MATH  Google Scholar 

  8. Eringen A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)

    Google Scholar 

  9. Eringen A.C.: Mechanics of Continua. Wiley, New York (1967)

    MATH  Google Scholar 

  10. Fisher G.M.C., Gurtin M.E.: Wave propagation in the linear theory of viscoelasticity. Q. Appl. Math. 23(2), 257–263 (1965)

    MathSciNet  MATH  Google Scholar 

  11. Green A.E., Rivlin R.S.: The mechanics of non-linear materials with memory, part I. Arch. Ration. Mech. Anal. 1(1), 1–21 (1957). doi:10.1007/BF00297992

    Article  MathSciNet  MATH  Google Scholar 

  12. Green A.E., Rivlin R.S.: The mechanics of non-linear materials with memory, part III. Arch. Ration. Mech. Anal. 4(5), 387–404 (1960). doi:10.1007/BF00281398

    MathSciNet  MATH  Google Scholar 

  13. Green A.E., Rivlin R.S., Spencer A.J.M.: The mechanics of non-linear materials with memory, part II. Arch. Ration. Mech. Anal. 3(1), 82–90 (1958). doi:10.1007/BF00284166

    MathSciNet  Google Scholar 

  14. Gurtin M.E., Herrera I.: On dissipation inequalities and linear viscoelasticity. Q. Appl. Math. 23, 235–245 (1965)

    MathSciNet  MATH  Google Scholar 

  15. Gurtin M.E., Sternberg E.: On the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 11, 291–356 (1962). doi:10.1007/BF00253942

    Article  MathSciNet  MATH  Google Scholar 

  16. Herrera I., Gurtin M.E.: A correspondence principle for viscoelastic wave propagation. Q. Appl. Math. 22, 360–364 (1965)

    MathSciNet  MATH  Google Scholar 

  17. Leitman, M.J., Fisher, G.M.C.: The linear theory of viscoelasticity. In: Flügge, S., Truesdell, C. (eds.) Encyclopedia of Physics, vol. VIa/3, Mechanics of Solids III, pp. 1–124. Springer, Berlin (1973)

  18. Maxwell J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867). doi:10.1098/rstl.1867.0004

    Article  Google Scholar 

  19. Noll W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 198–226 (1958). doi:10.1007/BF00277929

    Article  MathSciNet  Google Scholar 

  20. Oldroyd J.G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A Math. Sci. Phys. 200, 523–541 (1950). doi:10.1098/rspa.1950.0035

    Article  MathSciNet  MATH  Google Scholar 

  21. Pennisi S., Trovato M.: On the irreducibility of professor G.F. Smith’s representations for isotropic functions. Int. J. Eng. Sci. 25, 1059–1065 (1987). doi:10.1016/0020-7225(87)90097-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Pipkin A.C., Rivlin R.S.: The formulation of constitutive equations in continuum physics, part I. Arch. Ration. Mech. Anal. 4, 129–144 (1959). doi:10.1007/BF00281382

    Article  MathSciNet  MATH  Google Scholar 

  23. Rajagopal K.R.: A note on a reappraisal and generalization of the Kelvin–Voigt model. Mech. Res. Commun. 36, 232–235 (2009). doi:10.1016/j.mechrescom.2008.09.005

    Article  MATH  Google Scholar 

  24. Rivlin R.S.: Further remarks on the stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4(5), 681–702 (1955). doi:10.1512/iumj.1955.4.54025

    MathSciNet  MATH  Google Scholar 

  25. Rivlin R.S.: Stress relaxation in incompressible elastic materials at constant deformation. Q. Appl. Math. 14(1), 83–89 (1956)

    MathSciNet  MATH  Google Scholar 

  26. Rivlin R.S.: The constitutive equations for certain classes of deformations. Arch. Ration. Mech. Anal. 3(4), 304–311 (1959). doi:10.1007/BF00284182

    Article  MathSciNet  MATH  Google Scholar 

  27. Rivlin R.S.: The formulation of constitutive equations in continuum physics, part II. Arch. Ration. Mech. Anal. 4(3), 262–272 (1960). doi:10.1007/BF00281392

    MathSciNet  MATH  Google Scholar 

  28. Rivlin R.S., Ericksen J.L.: Stress-deformation relations for isotropic materials. Indiana Univ. Math. J. 4, 323–425 (1955). doi:10.1512/iumj.1955.4.54011

    Article  MathSciNet  MATH  Google Scholar 

  29. Smith G.F.: On the minimality of integrity bases for symmetric 3  ×  3 matrices. Arch. Ration. Mech. Anal. 5(5), 382–389 (1960). doi:10.1007/BF00252916

    Article  MATH  Google Scholar 

  30. Smith G.F.: On isentropic integrity bases. Arch. Ration. Mech. Anal. 18, 282–292 (1965). doi:10.1007/BF00251667

    Article  MATH  Google Scholar 

  31. Smith G.F.: On a fundamental error in two papers of C.C. Wang “On representations for isotropic functions, parts I and II”. Arch. Ration. Mech. Anal. 36, 161–165 (1970). doi:10.1007/BF00272240

    Article  MATH  Google Scholar 

  32. Smith G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors. Int. J. Eng. Sci. 9, 899–916 (1971). doi:10.1016/0020-7225(71)90023-1

    Article  MATH  Google Scholar 

  33. Spencer A.J.M.: The invariants of six 3 ×  3 matrices. Arch. Ration. Mech. Anal. 7, 64–77 (1961). doi:10.1007/BF00250750

    Article  MATH  Google Scholar 

  34. Spencer A.J.M.: Isotropic integrity bases for vectors and second-order tensors, part II. Arch. Ration. Mech. Anal. 18, 51–82 (1965). doi:10.1007/BF00253982

    Article  MATH  Google Scholar 

  35. Spencer A.J.M., Rivlin R.S.: Finite integrity bases for five or fewer symmetric 3  ×  3 matrices. Arch. Ration. Mech. Anal. 2(5), 435–446 (1958). doi:10.1007/BF00277941

    Article  MathSciNet  Google Scholar 

  36. Spencer A.J.M., Rivlin R.S.: Matrices for isotropic continua. Arch. Ration. Mech. Anal. 2, 309–336 (1958). doi:10.1007/BF00277933

    Article  MathSciNet  Google Scholar 

  37. Spencer A.J.M., Rivlin R.S.: Further results in the theory of matrix polynomials. Arch. Ration. Mech. Anal. 4, 214–230 (1960). doi:10.1007/BF00281388

    Article  MathSciNet  MATH  Google Scholar 

  38. Spencer A.J.M., Rivlin R.S.: Isotropic integrity bases for vectors and second order tensors, part I. Arch. Ration. Mech. Anal. 9, 45–63 (1962). doi:10.1007/BF00250750

    Article  MathSciNet  MATH  Google Scholar 

  39. Surana K.S., Ahmadi A.R., Reddy J.N.: The k-version of finite element method for self-adjoint operators in BVP. Int. J. Comput. Eng. Sci. 3, 155–218 (2002). doi:10.1142/S1465876302000605

    Article  Google Scholar 

  40. Surana K.S., Ahmadi A.R., Reddy J.N.: The k-version of finite element method for non-self-adjoint operators in BVP. Int. J. Comput. Eng. Sci. 4, 737–812 (2003). doi:10.1142/S1465876303002179

    Article  Google Scholar 

  41. Surana K.S., Allu S., Reddy J.N., TenPas P.W.: Least squares finite element processes in h,p,k mathematical and computational framework for a non-linear conservation law. Int. J. Numer. Methods Fluids 57, 1545–1568 (2008). doi:10.1002/fld.1695

    Article  MathSciNet  MATH  Google Scholar 

  42. Surana, K.S., Moody, T.C., Reddy, J.N.: Ordered rate constitutive theories in Lagrangian description for thermoviscoelastic solids without memory. Acta Mech. 224, 2785–2816 (2013). doi:10.1007/s00707-013-0893-3

  43. Surana, K.S., Moody, T.C., Reddy, J.N.: Rate constitutive theories of order zero in Lagrangian description for thermoelastic solids. Mech. Adv. Mater. Struct. (2013). doi:10.1080/15376494.2013.778617

  44. Surana, K.S., Nunez, D., Reddy, J.N.: Giesekus constitutive model for ordered thermoviscoelastic fluids based on ordered rate constitutive theories. J. Res. Updates Polym. Sci. 2, 232–260 (2013)

  45. Surana, K.S., Nunez, D., Reddy, J.N., Romkes, A.: Rate constitutive theories for ordered thermofluids. Contin. Mech. Thermodyn. 25. doi:10.1007/s00161-012-0257-6

  46. Surana, K.S., Nunez, D., Reddy, J.N., Romkes, A.: Rate constitutive theories for ordered thermoviscoelastic fluids-polymers. Contin. Mech. Thermodyn. 25 (2013). doi:10.1007/s00161-013-0295-8

  47. Surana, K.S.: Advanced Mechanics of Continua. (textbook in preparation) (2014)

  48. Surana K.S., Reddy J.N., Allu S.: The k-version of the finite element method for initial value problems: mathematical and computational framework. Int. J. Comput. Methods Eng. Sci. Mech. 8, 123–136 (2007). doi:10.1080/15502280701252321

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang C.C.: On representations for isotropic functions, part I: isotropic functions of symmetric tensors and vectors. Arch. Ration. Mech. Anal. 33, 249–267 (1969). doi:10.1007/BF00281278

    Article  MATH  Google Scholar 

  50. Wang C.C.: On representations for isotropic functions, part II: isotropic functions of skew-symmetric tensors, symmetric tensors, and vectors. Arch. Ration. Mech. Anal. 33, 268–287 (1969). doi:10.1007/BF00281279

    Article  Google Scholar 

  51. Wang C.C.: A new representation theorem for isotropic functions: an answer to professor G.F. Smith’s criticism of my papers on representations for isotropic functions, part I: scalar-valued isotropic functions. Arch. Ration. Mech. Anal. 36, 166–197 (1970). doi:10.1007/BF00272241

    Article  MATH  Google Scholar 

  52. Wang C.C.: A new representation theorem for isotropic functions: an answer to professor G.F. Smith’s criticism of my papers on representations for isotropic functions, part II: vector-valued isotropic functions, symmetric tensor-valued isotropic functions, and skew-symmetric tensor-valued isotropic functions. Arch. Ration. Mech. Anal. 36, 198–223 (1970). doi:10.1007/BF00272242

    Article  MATH  Google Scholar 

  53. Wang C.C.: Corrigendum to my recent papers on “representations for isotropic functions”. Arch. Ration. Mech. Anal. 43, 392–395 (1971). doi:10.1007/BF00252004

    Article  Google Scholar 

  54. Zaremba, S.: Sur une forme perfectionnée de la théorie de la relaxation. Bulletin international de l’académie des sciences de Cracovie1903 (1903). http://www.biodiversitylibrary.org/page/13138021

  55. Zaremba, S.: Sur une conception nouvelle des forces intérieures dans un fluide en mouvement. Mémorial des sciences mathématiques 82, 1–85 (1937). http://www.numdam.org/item?id=MSM_1937__82__1_0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Surana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surana, K.S., Moody, T. & Reddy, J.N. Ordered rate constitutive theories in Lagrangian description for thermoviscoelastic solids with memory. Acta Mech 226, 157–178 (2015). https://doi.org/10.1007/s00707-014-1173-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1173-6

Keywords

Navigation