Skip to main content
Log in

A coupled CFD-DEM analysis of granular flow impacting on a water reservoir

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Massive debris flows or rock avalanches falling into a water reservoir may cause devastating hazards such as overtopping or dam breakage. This paper presents a coupled Computational Fluid Dynamics and Discrete Element Method (CFD-DEM) analysis on the impacting behaviour of a granular flow falling from an inclined slope into a water reservoir. The coupling between CFD and DEM considers such important fluid–particle interaction forces as the buoyancy force, the drag force and the virtual mass force. It is found that the presence of water in the reservoir can generally help to reduce direct impact of granular flow on the check dam behind the reservoir, minimizes the intense collisions and bouncing among particles and helps form a more homogeneous final deposited heap as compared to the dry case. While the interparticle/particle–wall frictions and collisions dominate the energy dissipation in the dry granular flow, the majority of kinetic energy of the granular system in the wet case is first transferred to the water body, which leaves the granular flow itself to become a contact-shearing dominant one and causes impulse wave travelling between the check dam and the slope surface for a rather sustained period before settling down. A power law distribution is found for the velocity profile of the granular flow travelling on both the slope and the reservoir ground surfaces, and it may change temporarily to a linear distribution at the transition point of the slope toe where the Savage number depicts a peak. The consideration of rolling friction among particles may homogeneously reduce the travelling velocity of the granular flow and alleviate the overall impact on the check dam. The impact on the check dam depends on both the initial debris releasing height and the reservoir water level. Medium water levels in the reservoir have been found to be generally safer when the initial debris height is relatively high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ai J., Chen J.F., Rotter J.M., Ooi J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206, 269–282 (2011)

    Article  Google Scholar 

  2. Alexander D.: Urban landslides. Prog. Phys. Geogr. 13, 157–191 (1989)

    Article  Google Scholar 

  3. Anderson T.B., Jackson R.: Fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fundam. 6, 527–539 (1967)

    Article  Google Scholar 

  4. Bharadwaj R., Wassgren C., Zenit R.: The unsteady drag force on a cylinder immersed in a dilute granular flow. Phys. Fluids 16, 1511–1517 (2006)

    Google Scholar 

  5. Cates M.E., Wittmer J.P., Bouchaud J.P., Claudin P.: Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81, 1841–1844 (1998)

    Article  Google Scholar 

  6. Chen F., Drummb E.C., Guiochon G.: Coupled discrete element and finite volume solution of two classical soil mechanics problems. Comput. Geotech. 38, 638–647 (2011)

    Article  Google Scholar 

  7. Chiou M.-C., Wang Y., Hutter K.: Influence of obstacles on rapid granular flows. Acta Mech. 175, 105–122 (2005)

    Article  MATH  Google Scholar 

  8. Cundall P.A., Strack O.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  9. Datei, C.: Riproduzione su modello in scala 1:500 della franacadutanel 1959 entroillago-serbatoio del Maé, Internal Report, Univ. Of Padova, Padova, Italy (1968)

  10. Di Felice R.: The voidage function for fluid–particle interaction systems. Int. J. Multiph. Flow 20, 153–159 (1994)

    Article  MATH  Google Scholar 

  11. Deshpande S.S., Anumolu L., Trujillo M.F.: Evaluating the performance of the two-phase flow solver interFoam. Comput. Sci. Discov. 5, 014016 (2012)

    Article  Google Scholar 

  12. Giachetti T., Paris R., Kelfoun K., Pérez-Torrado F.: Numerical modelling of the tsunami triggered by the Güìmar debris avalanche, Tenerife (Canary Islands): comparison with field-based data. Mar. Geol. 284, 189–202 (2011)

    Article  Google Scholar 

  13. Goniva, C., Kloss, C., Hager, A., Pirker, S.: An open source CFD-DEM perspective. In: Proceedings of OpenFOAM Workshop, Göteborg, June 22–24 (2010)

  14. Guo N., Zhao J.D.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1–15 (2013)

    Article  MathSciNet  Google Scholar 

  15. Hanes D.M., Walton O.R.: Simulations and physical measurements of glass spheres flowing down a bumpy incline. Powder Technol. 109, 133–144 (2000)

    Article  Google Scholar 

  16. Heller V., Hager W.H., Minor H.E.: Scale effects in subaerial landslide generated impulse waves. Exp. Fluids 44, 691–703 (2008)

    Article  Google Scholar 

  17. Heller V., Hager W.H.: Impulse product parameter in landslide generated impulse waves. J. Waterw. Port Coast. Ocean Eng. 136, 145–155 (2010)

    Article  Google Scholar 

  18. Hürlimann M., Copons R., Altimir J.: Detailed debris flow hazard assessment in Andorra: a multidisciplinary approach. Geomorphology 78, 359–372 (2006)

    Article  Google Scholar 

  19. Hutter K., Wang Y., Pudasaini S.P.: The Savage–Hutter avalanche model: how far can it be pushed?. Phil. Trans. R. Soc. A 363, 1507–1528 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kafui K.D., Thornton C., Adams M.J.: Discrete particle-continuum fluid modelling of gas–solid fluidised beds. Chem. Eng. Sci. 57, 2395–2410 (2002)

    Article  Google Scholar 

  21. Kloss, C., Goniva, C.: LIGGGHTS: a new open source discrete element simulation software. In: Proceedings 5th International Conference on Discrete Element Methods, London, UK, August (2010). (website: http://www.liggghts.com)

  22. Knoll P., Mirazei S., Rodrigues M.: Interaction of a granular flow with a rectangular obstacle. Appl. Math. Model. 34, 407–414 (2010)

    Article  MATH  Google Scholar 

  23. Lehning M., Doorschot J., Bartelt P.: A snowdrift index based on SNOWPACK model calculations. Ann. Glaciol. 31, 382–386 (2000)

    Article  Google Scholar 

  24. Mohammed F., Fritz H.M.: Physical modelling of tsunamis generated by three-dimensional deformable granular landslides. J. Geophys. Res. 117, C11015 (2012)

    Article  Google Scholar 

  25. Mollon G., Richefeu V., Villard D., Daudon D.: Numerical simulation of rock avalanches: Influence of a local dissipative contact model on the collective behavior of granular flows. J. Geophys. Res. 117, F02036 (2012)

    Google Scholar 

  26. Mollon G., Zhao J.D.: Fourier–Voronoi-based generation of realistic samples for discrete modeling of granular materials. Granul. Matter 14, 621–638 (2012)

    Article  Google Scholar 

  27. Mollon G., Zhao J.D.: Generating realistic 3D sand particles using Fourier descriptors. Granul. Matter 15, 95–108 (2013)

    Article  Google Scholar 

  28. Mollon G., Zhao J.D.: Characterization of fluctuations in granular hopper flow. Granul. Matter 15, 827–840 (2013)

    Article  Google Scholar 

  29. Mollon, G., Zhao, J.D.: The influence of particle shape on granular Hopper flow. In: AIP Conference Proceedings 1542, 690-693 (2013)

  30. Odar, F., Hamilton, W. S.: Forces on a sphere accelerating in a viscous fluid. J. Fluid Mech. 18, 302–314 (1964)

    Google Scholar 

  31. Odar, F., Hamilton, W. S.: Verification of the proposed equation for calculation of the forces on a sphere accelerating in a viscous fluid. J. Fluid Mech. 25, 591–592 (1966)

    Google Scholar 

  32. O’Sullivan, C.: Particulate Discrete Element Modelling: A Geomechanics Perspective. Spon Press (an imprint of Taylor and Francis), London (2011)

  33. Panizzo A., De Girolamo P., Petaccia A.: Forecasting impulse wave generated by subaerial landslides. J. Geophys. Res. 110, C12025 (2005)

    Article  Google Scholar 

  34. Phillips C.B., Martin R.L., Jerolmack D.: Impulse framework for unsteady flows reveals super-diffusive bed load transport. Geophys. Res. Lett. 40, 1328–1333 (2013)

    Article  Google Scholar 

  35. Pitman E.B., de Long L.E.: A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 363, 1573–1601 (2005)

    Article  MATH  Google Scholar 

  36. Pitman E.B., Le J.: A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc. A 363, 1573–1601 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pudasaini S.P., Hutter K.: Rapid shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495, 193–208 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Pudasaini, S.P., Hutter, K.: Dynamics of rapid flows of dense granular avalanches. In: Avalanche Dynamics. Springer, Berlin (2007)

  39. Sailer R., Fellin W., Fromm R., Jörg P., Rammer L., Sampl P., Schaffhauser A.: Snow avalanche mass-balance calculation and simulation-model verification. Ann. Glaciol. 48, 183–192 (2008)

    Article  Google Scholar 

  40. Savage S.B.: The mechanics of rapid granular flows. Adv. Appl. Mech. 24, 289–366 (1984)

    Article  MATH  Google Scholar 

  41. Snoeijer J.H., Vlugt T.J.H., van Hecke M., van Saarloos W.: Force network ensemble: a new approach to static granular matter. Phys. Rev. Lett. 92, 054302 (2004)

    Article  Google Scholar 

  42. Suzuki K., Bardet J., Oda M., Iwashita K., Tsuji Y., Tanaka T., Kawaguchi T.: Simulation of upward seepage flow in a single column of spheres using discrete-element method with fluid–particle interaction. J. Geotech. Geoenviron. Eng. 133, 104–10 (2007)

    Article  Google Scholar 

  43. Tang C., van Asch T.W.J., Chang M., Chen G.Q., Zhao X.H., Huang X.C.: Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China. Geomorphology 139, 559–576 (2010)

    Google Scholar 

  44. Teufelsbauer H., Wang Y., Chiou M.C., Wu W.: Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granul. Matter 11, 209–220 (2009)

    Article  MATH  Google Scholar 

  45. Tsuji Y., Kawaguchi T., Tanaka T.: Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77, 79–87 (1993)

    Article  Google Scholar 

  46. Tsuji Y., Tanaka T., Ishida T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)

    Article  Google Scholar 

  47. Walder J.S., Watts P., Sorensen O.E., Janssen K.: Tsunamis generated by subaerial mass flows. J. Geophys. Res. 108, 2236 (2003)

    Article  Google Scholar 

  48. Watt S.F.L., Talling P.J., Vardy M.E., Heller V., Hühnerbach V., Urlaub M., Sarkar S., Masson D.G., Henstock T.J., Minshull T.A.: Combinations of volcanic-flank and seafloor-sediment failure offshore Montserrat, and their implications for tsunami generation. Earth Planet. Sci. Lett. 319, 228–240 (2012)

    Article  Google Scholar 

  49. Xu B.H., Feng Y.Q., Yu A.B., Chew S.J., Zulli P.: A numerical and experimental study of gas–solid flow in a fluid-bed reactor. Powder Handl. Process. 13, 71–76 (2001)

    Google Scholar 

  50. Xu B.H., Yu A.B.: Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem. Eng. Sci. 52, 2785–2809 (1997)

    Article  Google Scholar 

  51. Zhao, J.D., Mollon, G.: A statistically-based approach on reconstructing sand particles for discrete modelling. In: Proceedings of the Workshop on Experimental Micromechanics for Geomaterials, Hong Kong (May 2013)

  52. Zhao J.D., Shan T.: Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics. Powder Technol. 239, 248–258 (2013)

    Article  Google Scholar 

  53. Zhao J.D., Shan T.: Numerical modelling of fluid-particle interaction in granular media. Theor. Appl. Mech. Lett. 3(2), 021007 (2013)

    Article  Google Scholar 

  54. Zhao, J.D., Shan, T.: A coupled CFD-DEM approach on modelling fluid-particle interactions in granular materials. Eng. Comput. Under review (2013)

  55. Zhou G.D., Ng C.W.W.: Numerical investigation of reverse segregation in debris flows by DEM. Granul. Matter 12, 507–516 (2010)

    Article  MATH  Google Scholar 

  56. Zhou C., Ooi J.Y.: Numerical investigation of progressive development of granular pile with spherical and non-spherical particles. Mech. Mater. 41, 707–714 (2009)

    Article  Google Scholar 

  57. Zhou, Y.C., Wright, B.D., Yang, R.Y., Xu, B.H., Yu, A.B.: Rolling friction in the dynamic simulation of sandpile formation. Physica A 269, 536–553 (1999)

    Google Scholar 

  58. Zhu H.P., Zhou Z.Y., Yang R.Y., Yu A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62, 3378–3396 (2007)

    Article  Google Scholar 

  59. Zhu H.P., Zhou Z.Y., Yang R.Y., Yu A.B.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63, 5728–5770 (2008)

    Article  Google Scholar 

  60. Zuriguel, I., Mullin, T.: The role of particle shape on the stress distribution in a sandpile. Proc. R. Soc. Ser. A 464, 99–116 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jidong Zhao.

Additional information

Presented at the 8th European Solid Mechanics Conference in the Graz University of Technology, Austria, 9–13 July 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, T., Zhao, J. A coupled CFD-DEM analysis of granular flow impacting on a water reservoir. Acta Mech 225, 2449–2470 (2014). https://doi.org/10.1007/s00707-014-1119-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1119-z

Keywords

Navigation