Skip to main content
Log in

Shear lag analysis of a novel short fuzzy fiber-reinforced composite

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A novel short fuzzy fiber-reinforced composite (SFFRC) in which the aligned short carbon fiber reinforcements are coated with radially aligned carbon nanotubes (CNTs) is considered in this study. A three-phase shear lag model considering radial and axial deformations of the different constituent phases of the SFFRC has been developed to analyze the stress transfer mechanisms of the SFFRC. Traditionally, the shear lag models have been developed with an application of the axial load only on the representative volume element (RVE) of the composite in an attempt for analyzing the stress transfer between the fiber and the matrix. The three-phase shear lag model derived in this study analyzes the stress transfer to the short carbon fiber considering the application of the axial as well as the radial loads on the RVE of the SFFRC. It is found that if the carbon fiber is coated with radially aligned CNTs, then the axial load transferred to the fiber is significantly reduced due to the radial stiffening of the polymer matrix by CNTs. When compared with the results without CNTs, it is found that almost ~20 and ~29 % reductions in the maximum axial stress in the carbon fiber and the interfacial shear stress along its length occur, respectively, if the value of the applied radial load is twice of the applied axial load and the value of the CNT volume fraction is 0.0236 in the SFFRC. Effects of the variation of the carbon fiber aspect ratio, the carbon fiber volume fraction, and the application of the radial load on the load transfer characteristics of the SFFRC are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). doi:10.1038/354056a0

    Article  Google Scholar 

  2. Treacy M.M.J., Ebbesen T.W., Gibson J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996). doi:10.1038/381678a0

    Article  Google Scholar 

  3. Popov V.N., Van Doren V.E., Balkanski M.: Elastic properties of single-walled carbon nanotubes. Phys. Rev. B 61, 3078–3084 (2000). doi:10.1103/PhysRevB.69.073401

    Article  Google Scholar 

  4. Li C., Chou T.W.: A Structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003). doi:10.1016/S0020-7683(03)00056-8

    Article  MATH  Google Scholar 

  5. Natsuki T., Tantrakarn K., Endo M..: Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42, 39–45 (2004). doi:10.1016/j.carbon.2003.09.011

    Article  Google Scholar 

  6. Shen L., Li J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B 69, 045414 (2004). doi:10.1103/PhysRevB.69.045414

    Article  Google Scholar 

  7. Liu J.Z., Zheng Q.S., Wang L.F., Jiang Q.: Mechanical properties of single-walled carbon nanotube bundles as bulk materials. J. Mech. Phys. Solids 53, 123–142 (2005). doi:10.1016/j.jmps.2004.06.008

    Article  MATH  Google Scholar 

  8. Wernik J.M., Meguid S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010). doi:10.1007/s00707-009-0246-4

    Article  MATH  Google Scholar 

  9. Tsai J.L., Tzeng S.H., Chiu Y.T.: Characterizing elastic properties of carbon nanotube/polyimide nanocomposites using multi-scale simulation. Compos. Part B 41, 106–115 (2010). doi:10.1016/j.compositesb.2009.06.003

    Article  Google Scholar 

  10. Schadler L.S., Giannaris S.C., Ajayan P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73, 3842–3844 (2000). doi:10.1063/1.122911

    Article  Google Scholar 

  11. Li C., Chou T.W.: Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotechnol. 3, 1–8 (2003). doi:10.1166/jnn.2003.233

    Article  Google Scholar 

  12. Gao X.L., Li K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids Struct. 42, 1649–1667 (2005). doi:10.1016/j.ijsolstr.2004.08.020

    Article  MATH  Google Scholar 

  13. Meguid S.A., Wernik J.M., Cheng Z.Q.: Atomistic-based continuum representation of the effective properties of nano-reinforced epoxies. Int. J. Solids Struct. 47, 1723–1736 (2010). doi:10.1016/j.ijsolstr.2010.03.009

    Article  MATH  Google Scholar 

  14. Jiang L.Y., Huang Y., Jiang H., Ravichandran G., Gao H., Hwang K.C., Liu B.: A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J. Mech. Phys. Solids 54, 2436–2452 (2006). doi:10.1016/j.jmps.2006.04.009

    Article  MATH  Google Scholar 

  15. Li K., Saigal S.: Micromechanical modeling of stress transfer in carbon nanotube reinforced polymer composites. Mater. Sci. Eng. A 457, 44–57 (2007). doi:10.1016/j.msea.2006.12.018

    Article  Google Scholar 

  16. Zhang J., He C.: A three-phase cylindrical shear-lag model for carbon nanotube composites. Acta Mech. 196, 33–54 (2008). doi:10.1007/s00707-007-0489-x

    Article  MATH  Google Scholar 

  17. Downs W.B., Baker R.T.K.: Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers. J. Mater. Res. 10, 625–633 (1995). doi:10.1557/JMR.1995.0625

    Article  Google Scholar 

  18. Bower C., Zhu W., Jin S., Zhou O.: Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 77, 830–832 (2000). doi:10.1063/1.1306658

    Article  Google Scholar 

  19. Thostenson E.T., Li W.Z., Wang D.Z., Ren Z.F., Chou T.W.: Carbon nanotube/carbon fiber hybrid multiscale composites. Appl. Phys. Lett. 91, 6034–6037 (2002). doi:10.1063/1.1466880

    Google Scholar 

  20. Zhao Z.G., Ci L.J., Cheng H.M., Bai J.B.: The growth of multi-walled carbon nanotubes with different morphologies on carbon fibers. Carbon 43, 651–673 (2005). doi:10.1016/j.carbon.2004.10.013

    Article  Google Scholar 

  21. Veedu V.P., Cao A., Li X., Ma K., Soldano C., Kar S., Ajayan P.M., Ghasemi-Nejhad M.N.: Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nature Mater. 5, 457–462 (2006). doi:10.1038/nmat1650

    Article  Google Scholar 

  22. Bekyarova E., Thostenson E.T., Yu A., Kim H., Gao J., Tang J., Hahn H.T., Chow T.W., Itkis M.E., Haddon R.C.: Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 23, 3970–3974 (2007). doi:10.1021/la062743p

    Article  Google Scholar 

  23. Mathur R.B., Chatterjee S., Singh B.P.: Growth of carbon nanotubes on carbon fiber substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68, 1608–1615 (2008). doi:10.1016/j.compscitech.2008.02.020

    Article  Google Scholar 

  24. Kepple K.L., Sanborn G.P., Lacasse P.A., Gruenberg K.M., Ready W.J.: Improved fracture toughness of carbon fiber composite functionalized with multi walled nanotubes. Carbon 46, 2026–2033 (2008). doi:10.1016/j.carbon.2008.08.010

    Article  Google Scholar 

  25. Zhao J., Liu L., Guo Q., Shi J., Zhai G., Song J., Liu Z.: Growth of carbon nanotubes on the surface of carbon fibers. Carbon 46, 380–383 (2008). doi:10.1016/j.carbon.2007.11.021

    Article  Google Scholar 

  26. Vlasveld D.P.N., Daud W., Bersee H.E.N., Picken S.J.: Continuous fibre composites with a nanocomposite matrix: Improvement of flexural and compressive strength at elevated temperatures. Compos. Part A 38, 730–738 (2007). doi:10.1016/j.compositesa.2006.09.010

    Article  Google Scholar 

  27. Sharma S.P., Lakkad S.C.: Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites. Surf. Coat. Technol. 205, 350–355 (2010). doi:10.1016/j.surfcoat.2010.06.055

    Article  Google Scholar 

  28. Lv P., Feng Y., Zhang P., Chen H., Zhao N., Feng W.: Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers. Carbon 49, 4665–4673 (2011). doi:10.1016/j.carbon.2011.06.064

    Article  Google Scholar 

  29. Song Q., Li K., Li H., Li H., Ren C.: Grafting straight carbon nanotubes radially onto carbon fibers and their effect on the mechanical properties of carbon/carbon composites. Carbon 50, 3943–3960 (2012). doi:10.1016/j.carbon.2012.03.023

    Article  Google Scholar 

  30. Chatzigeorgiou G., Efendiev Y., Lagoudas D.C.: Homogenization of aligned “fuzzy fiber” composites. Int. J. Solids Struct. 48, 2668–2680 (2011). doi:10.1016/j.ijsolstr.2011.05.011

    Article  Google Scholar 

  31. Kundalwal S.I., Ray M.C.: Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes. Mech. Mater. 53, 47–60 (2012). doi:10.1016/j.mechmat.2012.05.008

    Article  Google Scholar 

  32. Ray M.C., Guzmande Villoria R., Wardle B.L.: Load transfer analysis in short carbon fibers with radially-aligned carbon nanotubes embedded in a polymer matrix. J. Adv. Mater. 41, 82–94 (2009)

    Google Scholar 

  33. Nairn J.A.: On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech. Mater. 26, 63–80 (1997). doi:10.1016/S0167-6636(97)00023-9

    Article  Google Scholar 

  34. Hashin Z., Rosen B.W.: The elastic moduli of fiber-reinforced materials. ASME J. Appl. Mech. 31, 223–232 (1964). doi:10.1115/1.3629590

    Article  Google Scholar 

  35. Honjo K.: Thermal stresses and effective properties calculated for fiber composites using actual cylindrically-anisotropic properties of interfacial carbon coating. Carbon 45, 865–872 (2007). doi:10.1016/j.carbon.2006.11.007

    Article  Google Scholar 

  36. Odegard G.M., Clancy T.C., Gates T.S.: Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46, 553–562 (2005). doi:10.1016/j.polymer.2004.11.022

    Article  Google Scholar 

  37. Jiang B., Liu C., Zhang C., Liang R., Wang B.: Maximum nanotube volume fraction and its effect on overall elastic properties of nanotube-reinforced composites. Compos. Part B 40, 212–217 (2009). doi:10.1016/j.compositesb.2008.11.003

    Article  Google Scholar 

  38. Odegard G.M., Gates T.S., Wise K.E., Park C., Siochi E.J.: Constitutive modeling of nanotube-reinforced polymer composites. Compos. Sci. Technol. 63, 1671–1687 (2003). doi:10.1016/S0266-3538(03)00063-0

    Article  Google Scholar 

  39. Seidel G.D., Lagoudas D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38, 884–907 (2006). doi:10.1016/j.mechmat.2005.06.029

    Article  Google Scholar 

  40. Li Y., Waas A.M., Arruda E.M.: A closed-form, hierarchical, multi-interphase model for composites—derivation, verification and application to nanocomposites. J. Mech. Phys. Solids 59, 43–63 (2011). doi:10.1016/j.jmps.2010.09.015

    Article  MathSciNet  Google Scholar 

  41. Dunn M.L., Ledbetter H.: Elastic moduli of composites reinforced by multiphase particles. ASME J. Appl. Mech. 62, 1023–1028 (1995). doi:10.1115/1.2896038

    Article  MATH  Google Scholar 

  42. Qui Y.P., Weng G.J.: On the application of Mori–Tanaka’s theory involving transversely isotropic spheroidal inclusions. Int. J. Eng. Sci. 28, 1121–1137 (1990). doi:10.1016/0020-7225(90)90112-V

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundalwal, S.I., Ray, M.C. Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech 225, 2621–2643 (2014). https://doi.org/10.1007/s00707-014-1095-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1095-3

Keywords

Navigation