Skip to main content
Log in

Fracture analysis of a nonhomogeneous coating/substrate system with an interface under thermal shock

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The work is devoted to establish a model for the interface problem of a nonhomogeneous coating/substrate system. In the model, according to the distribution of material properties, three types of interface problems are considered: (i) The material properties and their derivatives are continuous on the interface; (ii) the material properties are continuous, but their derivatives are discontinuous on the interface; and (iii) the material properties as well as their derivatives are discontinuous on the interface. In order to solve the complex interface problems, a transient interaction energy integral method (IEIM) is developed in this paper. The transient thermal stress intensity factors are evaluated using the IEIM combined with the finite element method and the finite difference method. The influences of the interface discontinuity and the geometric parameters on the transient TSIFs are investigated. Particularly, the crack growth behavior with different interface discontinuities is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

λ :

Heat conductivity

α :

Thermal expansion coefficient

c :

Specific heat

E :

Young’s modulus

ρ :

Density

β :

Nonhomogeneity constants

T :

Temperature

u i :

Displacement

σ ij :

Stress

ε ij :

Strain

K I :

Mode-I TSIF

K II :

Mode-II TSIF

μ :

Shear modulus

ν :

Poisson’s ratio

S ijkl :

Flexibility tensor

I :

Interaction energy integral

K 0 :

Normalized factor

t n :

Normalized time

K 1C :

Local fracture toughness

References

  1. Kawasaki A., Watanabe R.: Thermal fracture behavior of metal/ceramic functionally graded materials. Eng. Fract. Mech. 69, 1713–1728 (2002)

    Article  Google Scholar 

  2. Liu Y., Persson C., Melin S., Wigren J.: Long crack behavior in a thermal barrier coating upon thermal shock loading. J Therm. Spray Techn. 14, 258–263 (2005)

    Article  Google Scholar 

  3. Czuck G., Mattheck C., Munz D., Stamm H.: Crack growth under cyclic thermal shock loading. Nucl. Eng. Des. 84, 189–199 (1985)

    Article  Google Scholar 

  4. Noda N.: Thermal stresses intensity factor for functionally gradient plate with an edge crack. J. Thermal Stress. 20, 373–387 (1997)

    Article  Google Scholar 

  5. Jin Z.H., Noda N.: Crack-tip singular fields in nonhomogeneous materials. J. Appl. Mech. 61, 738–740 (1994)

    Article  MATH  Google Scholar 

  6. Erdogan F., Wu B.H.: The surface crack problem for a plate with functionally graded properties. J. Appl. Mech. 64, 449–456 (1997)

    Article  MATH  Google Scholar 

  7. Guo L.C., Noda N., Ishihara M.: Thermal stress intensity factors for a normal surface crack in a functionally graded coating structure. J. Thermal Stress. 31, 149–164 (2007)

    Article  Google Scholar 

  8. Guo L.C., Noda N., Wu L.Z.: Thermal fracture model for a functionally graded plate with a crack normal to the surfaces and arbitrary thermomechanical properties. Compos. Sci. Technol. 68, 1034–1041 (2008)

    Article  Google Scholar 

  9. Ghosh M., Kanoria M.: Generalized thermoelastic functionally graded spherically isotropic solid containing a spherical cavity under thermal shock. Appl. Math. Mech. 29, 1263–1278 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Banik S., Kanoria M.: Generalized thermoelastic interaction in a functionally graded isotropic unbounded medium due to varying heat source with three-phase-lag effect. Math. Mech. Solids. 18, 231–245 (2013)

    Article  MathSciNet  Google Scholar 

  11. Chen J.L.: Determination of thermal stress intensity factors for an interface crack in a graded orthotropic coating-substrate structure. Int. J. Fract. 133, 303–328 (2005)

    Article  MATH  Google Scholar 

  12. Profant T., Ševeček O., Kotoul M.: Calculation of K-factor and T-stress for cracks in anisotropic bimaterials. Eng. Fract. Mech. 75, 3707–3726 (2008)

    Article  Google Scholar 

  13. Li Y.D, Lee K.Y.: Effects of the weak/micro-discontinuity of interface on the fracture behavior of a functionally graded coating with an inclined crack. Arch. Appl. Mech. 79, 779–791 (2009)

    Article  MATH  Google Scholar 

  14. Petrova V., Schmauder S.: Crack-interface crack interactions in functionally graded/homogeneous composite bimaterials subjected to a heat flux. Mech. Comp. Mater. 47, 125–136 (2011)

    Google Scholar 

  15. Ding S.H., Li X.: Thermal stress intensity factors for an interface crack in a functionally graded layered structure. Arch. Appl. Mech. 81, 943–955 (2011)

    Article  MATH  Google Scholar 

  16. Petrova V., Schmauder S.: Interaction of a system of cracks with an interface crack in functionally graded/homogeneous bimaterials under thermo-mechanical loading. Comput. Mater. Sci. 64, 229–233 (2012)

    Article  Google Scholar 

  17. Kc A., Kim J.H.: Interaction integrals for thermal fracture of functionally graded materials. Eng. Fract. Mech. 75, 2542–2565 (2008)

    Article  Google Scholar 

  18. Yu H.J., Wu L.Z., Guo L.C., Du S.Y., He Q.L.: Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method. Int. J. Solids Struct. 46, 3710–3724 (2009)

    Article  MATH  Google Scholar 

  19. Merzbacher M.J., Horst P.: A model for interface cracks in layered orthotropic solids: convergence of modal decomposition using the interaction integral method. Int. J. Numer. Meth. Eng. 77, 1052–1071 (2009)

    Article  MATH  Google Scholar 

  20. Guo L.C., Guo F.N., Yu H.J., Zhang L.: An interaction energy integral method for nonhomogeneous materials with interfaces under thermal loading. Int. J. Solids Struct. 49, 355–365 (2012)

    Article  Google Scholar 

  21. Noda N.: Thermal stresses in functionally graded materials. J. Thermal Stress. 22, 477–512 (1999)

    Article  MathSciNet  Google Scholar 

  22. Wang B.L., Han J.C., Du S.Y.: Thermal shock resistance analysis methodology of ceramic coating/metal substrate systems. Eng. Fract. Mech. 77, 939–950 (2010)

    Article  Google Scholar 

  23. Chang D.M., Wang B.L.: Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction. Eng. Fract. Mech. 94, 29–36 (2012)

    Article  Google Scholar 

  24. Wei S., Qun B.F., Fu C.W., Zhuang M.: Modeling of micro-crack growth during thermal shock based on microstructural images of thermal barrier coatings. Comput. Mater. Sci. 46, 600–602 (2009)

    Article  Google Scholar 

  25. Li J., Song F., Jiang C.: Direct numerical simulations on crack formation in ceramic materials under thermal shock by using a non-local fracture model. J. Eur. Ceram. Soc. 33, 2677–2687 (2013)

    Article  Google Scholar 

  26. Janssens K.G.F., Niffenegger M., Reichlin K.: A computational fatigue analysis of cyclic thermal shock in notched specimens. Nucl. Eng. Des. 239, 36–44 (2009)

    Article  Google Scholar 

  27. Zhang Y.X., Wang B.L.: Thermal shock resistance analysis of a semi-infinite ceramic foam. Int. J. Eng. Sci. 62, 22–30 (2013)

    Article  MATH  Google Scholar 

  28. Williams M.L.: On the stress distribution at the base of a stationary crack. J. Appl. Mech-T ASME. 24, 109–114 (1957)

    MATH  Google Scholar 

  29. Noda N., Guo L.C.: Thermal shock analysis for a functionally graded plate with a surface crack. Acta. Mech. 195, 157–166 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licheng Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Guo, L., Guo, F. et al. Fracture analysis of a nonhomogeneous coating/substrate system with an interface under thermal shock. Acta Mech 225, 2485–2500 (2014). https://doi.org/10.1007/s00707-014-1087-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1087-3

Keywords

Navigation