Skip to main content
Log in

Thermal shock analysis for a functionally graded plate with a surface crack

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The fracture behavior of a functionally graded material (FGM) plate subjected to a thermal shock is studied. A surface crack is considered. The thermomechanical properties of the FGM plate are assumed to vary along the thickness direction. By using a perturbation method, the transient temperature field is solved. Then the transient thermal stresses and the corresponding thermal stress intensity factor (TSIF) are obtained. The transient thermal stresses and TSIF in an FGM ceramic/metal (ZrO2/Ti-6Al-4V) plate are shown in figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noda N. and Jin Z.H. (1993). Thermal stress intensity factors for a crack in a strip of functionally gradient material. Int. J. Solids Struct. 30: 1039–1056

    Article  MATH  Google Scholar 

  2. Noda N. and Jin Z.H. (1993). Steady thermal stresses in an infinite non-homogeneous elastic solid containing a crack. J. Therm. Stress. 16: 181–197

    Article  Google Scholar 

  3. Noda N. and Jin Z.H. (1995). Crack-tip singularity fields in nonhomogeneous body under thermal stress fields. JSME Int. J. Ser. A 38: 364–369

    Google Scholar 

  4. Jin Z.H. and Noda N. (1994). Crack-tip singular fields in nonhomogeneous materials. J. Appl. Mech. 61: 738–740

    MATH  Google Scholar 

  5. Dag S. (2006). Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach. Engng. Fract. Mech. 73: 2802–2828

    Article  Google Scholar 

  6. Guo L.C., Wu L.Z., Zeng T. and Ma L. (2004). Mode I crack problem for a functionally graded orthotropic strip. Eur. J. Mech. A Solids 23: 219–234

    Article  MATH  Google Scholar 

  7. Guo L.C. and Noda N. (2007). Modeling method for a crack problem of functionally graded materials with arbitrary properties – Piecewise-exponential model. Int. J. Solids Struct. 44: 6768–6790

    Article  Google Scholar 

  8. Erdogan F. and Wu B.H. (1997). The surface crack problem for a plate with functionally graded properties. J. Appl. Mech. 64: 449–456

    MATH  Google Scholar 

  9. Erdogan F. and Wu B.H. (1996). Crack problem in functionally graded material layers under thermal stresses. J. Therm. Stress. 19: 237–265

    Article  Google Scholar 

  10. Noda N. (1997). Thermal stresses intensity factor for functionally gradient plate with an edge crack. J. Therm. Stress. 20: 373–387

    Article  Google Scholar 

  11. Guo L.C., Wu L.Z., Zeng T. and Ma L. (2004). The dynamic fracture behavior of a functionally graded coating-substrate system. Comput. Struct. 64: 433–441

    Article  Google Scholar 

  12. Kawasaki A. and Watanabe R. (2002). Thermal fracture behavior of metal/ceramic functionally graded materials. Engng. Fract. Mech. 69: 1713–1728

    Article  Google Scholar 

  13. Obata Y. and Noda N. (1993). Unsteady thermal stresses in functionally gradient material plate (influence of heating and cooling conditions on unsteady thermal stresses). Trans. JSME A 59: 1097–1103

    Google Scholar 

  14. Jin Z.H. and Paulino G.H. (2001). Transient thermal stress analysis of an edge crack in a functionally graded material. Int. J. Fract. 107: 73–98

    Article  Google Scholar 

  15. Wang B.L., Mai Y.W. and Zhang X.H. (2004). Thermal shock resistance of functionally graded materials. Acta Mater. 52: 4961–4972

    Article  Google Scholar 

  16. Wang B.L. and Mai Y.W. (2007). On thermal shock behavior of functionally graded materials. J. Therm. Stress. 30: 523–558

    Article  Google Scholar 

  17. Kadioglu S., Dag S. and Yahsi S. (1998). Crack problem for a functionally graded layer on an elastic foundation. Int. J. Fract. 94: 63–77

    Article  Google Scholar 

  18. Erdogan F. and Gupta G.D. (1972). On the numerical solution of singular integral equations. Q. Appl. Math. 30: 525–534

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naotake Noda.

Additional information

Dedicated to Professor Franz Ziegler on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noda, N., Guo, LC. Thermal shock analysis for a functionally graded plate with a surface crack. Acta Mech 195, 157–166 (2008). https://doi.org/10.1007/s00707-007-0562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0562-5

Keywords

Navigation