Skip to main content
Log in

Multilayered piezomagnetic/piezoelectric composite with periodic interfacial Yoffe-type cracks under magnetic or electric field

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The problem of periodic mode-III Yoffe-type cracks propagating subsonically along the interfaces in a multilayered piezomagnetic/piezoelectric composite under in-plane magnetic or electric field is studied. By means of periodic conditions, the analysis of the multilayered problem is simplified to a bilayer model with an interfacial Yoffe-type crack, which can be reduced to the Cauchy singular integration equation of the first kind, by utilizing the Fourier transform. The normalized dynamic stress intensity factor (NDSIF) can be obtained numerically. Results show that the NDSIF generally depends on the layer thickness ratio, crack moving speed, electric or magnetic loading as well as material properties. In regard to the curve monotony of the NDSIF versus the passive layer thickness, there generally exist three different cases distinguished by a parameter, θ, which depends on the crack moving speed as well as material mismatch parameters. Similar behavior has been reported for the periodic static cracks where the different monotonies are judged by the material mismatch parameter G (Wan et al. in Eng. Fract. Mech. 84:132–145, 2012). The present results reduce to those of periodic static cracks when considering the vanishing crack speed. As far as the curve monotony and the judging parameter are concerned, no matter what the crack moving speed is, the Yoffe-type crack problem is identical to the static crack problem when the piezomagnetic and piezoelectric layers share the same shear wave velocity. In addition, detailed analyses are also provided for NDSIF versus crack moving speed for different layer thickness ratio and material mismatch parameters. This study can be considered as an extension of the previous analysis of periodic static cracks problem and is expected together to provide some guidelines for the optimal design of a multilayered PM/PE composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li L., Guo Y.Y., Zhou J.P., Wang P., Liu P., Chen X.M.: Adjusting the voltage step-up ratio of a magnetoelectric composite transformer. Chin. Sci. Bull. 56, 700–703 (2011)

    Article  Google Scholar 

  2. Finkel P., Lofland S.E., Garrity Ed: Magnetoelastic/piezoelectric laminated structures for tunable remote contactless magnetic sensing and energy harvesting. Appl. Phys. Lett. 94, 072502 (2009)

    Article  Google Scholar 

  3. Tzou H.S., Lee H.-J., Arnold S.M.: Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mech. Adv. Mater. Struct. 11, 367–393 (2004)

    Article  Google Scholar 

  4. Bichurin M.I., Filippov D.A., Petrov V.M., Laletsin V.M., Paddubnaya N., Srinivasan G.: Resonance magnetoelectric effects in layered magnetostrictive- piezoelectric composites. Phys. Rev. B 68, 132408 (2003)

    Article  Google Scholar 

  5. Srinivasan G., Rasmussen E.T., Gallegos J., Srinivasan R., Bokhan Y.I., Laletin V.M.: Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 (2001)

    Article  Google Scholar 

  6. Bichurin M.I., Kornev I.A., Petrov V.M., Tatarenko A.S., Kiliba Yu. V., Srinivasan G.: Theory of magnetoelectric effects at microwave frequencies in a piezoelectric/magnetostrictive multilayer composite. Phys. Rev. B 64, 094409 (2001)

    Article  Google Scholar 

  7. Srinivasan G., Rasmussen E.T., Bush A.A., Kamentsev K.E., Meshcheryakov V.F., Fetisov Y.K.: Structural and magnetoelectric properties of MFe2O4-PZT (M=Ni, Co) and La x (Ca, Sr) 1−x MnO3-PZT multilayer composites. Appl. Phys. A 78, 721–728 (2004)

    Google Scholar 

  8. Islam R.A., Ni Y., Khachaturyan A.G., Priya S.: Giant magnetoelectric effect in sintered multilayered composite structures. J. Appl. Phys. 104, 044103 (2008)

    Article  Google Scholar 

  9. Samudrala O., Rosakis A.J.: Effect of loading and geometry on the subsonic/intersonic transition of a immaterial interface crack. Eng. Fract. Mech. 70, 309–337 (2003)

    Article  Google Scholar 

  10. Wang H.Y., Singh Raj N.: Electric field effects on the crack propagation in an electrostrictive PMN-PT ceramic. Ferroelectrics 168, 281–291 (1995)

    Article  Google Scholar 

  11. Uchino K., Takahashi A.: Multilayer ceramic actuators. Curr. Opin. Solid State Mater. Sci. 1(5), 698–705 (1996)

    Article  Google Scholar 

  12. Wan Y., Yue Y., Zhong Z.: Multilayered piezomagnetic/piezoelectric composite with periodic interface cracks under magnetic or electric field. Eng. Fract. Mech. 84, 132–145 (2012)

    Article  Google Scholar 

  13. Yoffe E.H.: The moving Griffith crack. Philos. Mag. 42, 739–750 (1951)

    MATH  MathSciNet  Google Scholar 

  14. Freund L.B.: Dynamic Fracture Mechanics. Cambridge Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  15. Chen Z., Yu S.: Antiplane Yoffe crack problem in piezoelectric materials. Int. J. Fract. 85, L41–L45 (1997)

    Google Scholar 

  16. Hou M.S., Qian X.Q., Bian W.F.: Energy release rate and bifurcation angles of piezoelectric materials with antiplane moving crack. Int. J. Fract. 107, 297–306 (2001)

    Article  Google Scholar 

  17. Chen Z., Karihaloo B., Yu S.: Griffith crack moving along the interface of two dissimilar piezoelectric materials. Int. J. Fract. 91, 197–203 (1998)

    Article  Google Scholar 

  18. Gao C., Zhao Y., Wang M.: Moving antiplane crack between two dissimilar piezoelectric media. Int. J. Solids Struct. 38, 9331–9345 (2001)

    Article  MATH  Google Scholar 

  19. Wang X., Zhong Z., Wu F.: A moving conducting crack at the interface of two dissimilar piezoelectric materials. Int. J. Solids Struct. 40, 2381–2399 (2003)

    Article  MATH  Google Scholar 

  20. Soh A., Liu J., Lee K., Fang D.: On a moving Griffith crack in anisotropic piezoelectric solids. Arch. Appl. Mech. 72, 458–469 (2002)

    Article  MATH  Google Scholar 

  21. Shen S., Nishioka T., Hu S.: Crack propagation along the interface of piezoelectric bimaterial. Theor. Appl. Fract. Mech. 34, 185–203 (2000)

    Article  Google Scholar 

  22. Herrmann K., Komarov A., Loboda V.: On a moving interface crack with a contact zone in a piezoelectric bimaterial. Int. J. Solids Struct. 42, 4555–4573 (2005)

    Article  MATH  Google Scholar 

  23. Kwon J., Lee K., Kwon S.: Moving crack in piezoelectric ceramic strip under antiplane shear loading. Mech. Res. Commun. 27, 327–332 (2000)

    Article  MATH  Google Scholar 

  24. Kwon J., Lee K.: Moving interfacial crack between piezoelectric ceramic and elastic layers. Eur. J. Mech. A Solids 19, 979–987 (2000)

    Article  MATH  Google Scholar 

  25. Lee J., Kwon S., Lee K., Kwon J.: Anti-plane interfacial Yoffe-crack between a piezoelectric and two orthotropic layers. Eur. J. Mech. A Solids 121, 483–492 (2002)

    Article  Google Scholar 

  26. Li C.Y., Weng G.J.: Yoffe-type moving crack in a functionally graded piezoelectric material. Proc. R. Soc. Lond. A 458, 381–399 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rokne J., Singh B., Dhaliwal R.: Moving antiplane shear crack in a piezoelectric layer bonded to dissimilar elastic infinite spaces. Eur. J. Mech. A Solids 31, 47–53 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Chen H., Ma J., Pei Y., Fang D.: Anti-plane Yoffe-type crack in ferroelectric materials. Int. J. Fract. 179, 35–43 (2013)

    Article  Google Scholar 

  29. Geng X., Zhang Q.: Evaluation of piezocomposites for ultrasonic transducer applications influence of the unit cell dimensions and the properties of constituents on the performance of 2-2 piezocomposites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 857–872 (1997)

    Article  Google Scholar 

  30. Mukherjee S., Das S.: Moving interfacial Griffith crack between bonded dissimilar media. J. Appl. Math. 3, 289–299 (2005)

    Article  MathSciNet  Google Scholar 

  31. Das S., Patra B.: Moving Griffith crack at the interface of two dissimilar orthotropic half planes. Eng. Fract. Mech. 54, 523–531 (1996)

    Article  Google Scholar 

  32. Fang, D.N., Liu, J.X.: Fracture Mechanics of Piezoelectric and Ferroelectric Solids. Tsinghua University Press, Beijing, pp. 151–155 (in Chinese) (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, Y., Wan, Y. Multilayered piezomagnetic/piezoelectric composite with periodic interfacial Yoffe-type cracks under magnetic or electric field. Acta Mech 225, 2133–2150 (2014). https://doi.org/10.1007/s00707-013-1032-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1032-x

Keywords

Navigation