Skip to main content
Log in

Analysis of micro-rotating disks based on the strain gradient elasticity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the mechanical behavior of micro-rotating disks is investigated utilizing the strain gradient theory. The governing equation and boundary conditions are derived utilizing the variational method. The analytical solution for the derived equation is also presented. As a case study, some numerical results are presented to emphasize the importance of utilization of non-classical theories such as the strain gradient elasticity instead of the classical continuum theory in dealing with micro-rotating disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W.: Strain gradient plasticity: theory and experiment. Acta Metallurgica Et Materialia 42, 475–487 (1994)

    Article  Google Scholar 

  2. Nix W.D., Gao H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)

    Article  MATH  Google Scholar 

  3. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  4. Rezazadeh G., Vahdat A., Tayefeh-rezaei S., Cetinkaya C.: Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech. 223, 1137–1152 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Pakniyat A., Salarieh H., Alasty A.: Stability analysis of a new class of MEMS gyroscopes with parametric resonance. Acta Mech. 223, 1169–1185 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Li, Y., Meguid, S.A., Fu, Y., Xu, D.: Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches. Acta Mech. 224, 1–15 (2013)

    Google Scholar 

  7. Wang C., Guo W., Feng Q.: Deflection and stability of membrane structures under electrostatic and Casimir forces in microelectromechanical systems. Acta Mech. 180, 49–60 (2005)

    Article  MATH  Google Scholar 

  8. Moshtaghin A.F., Naghdabadi R., Asghari M.: A study on the plastic properties of unidirectional nanocomposites with interface energy effects. Acta Mech. 224, 789–809 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ke L.-L., Wang Y.-S., Yang J., Kitipornchai S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50, 256–267 (2012)

    Article  MathSciNet  Google Scholar 

  10. Jomehzadeh E., Noori H.R., Saidi A.R.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Phys. E Low-Dimens. Syst. Nanostruct. 43, 877–883 (2011)

    Article  Google Scholar 

  11. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mindlin R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  13. Mindlin R.D., Eshel N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  14. Collin F., Caillerie D., Chambon R.: Analytical solutions for the thick-walled cylinder problem modeled with an isotropic elastic second gradient constitutive equation. Int. J. Solids Struct. 46, 3927–3937 (2009)

    Article  MATH  Google Scholar 

  15. Asghari M., Kahrobaiyan M.H., Ahmadian M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Asghari M., Kahrobaiyan M.H., Nikfar M., Ahmadian M.T.: A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech. 223, 1233–1249 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Beskos, S.P.D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. (Ingenieur Arch.) 78, 625–635 (2008)

    Google Scholar 

  18. Lazopoulos K.A.: On the gradient strain elasticity theory of plates. J. Mech. 23, 843–852 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Lazopoulos K.A.: Post-buckling problems for long elastic beams. Acta Mech. 164, 189–198 (2003)

    Article  MATH  Google Scholar 

  20. Papargyri-Beskou S., Tsepoura K.G., Polyzos D., Beskos D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)

    Article  MATH  Google Scholar 

  21. Ramezani S.: A shear deformation micro-plate model based on the most general form of strain gradient elasticity. Int. J. Mech. Sci. 57, 34–42 (2012)

    Article  Google Scholar 

  22. Ramezani S.: Nonlinear vibration analysis of micro-plates based on strain gradient elasticity theory. Nonlinear Dyn. 73, 1399–1421 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tsai N.C., Liou J.S., Lin C.C., Li T.: Design of micro-electromagnetic drive on reciprocally rotating disc used for micro-gyroscopes. Sens. Actuators A Phys. 157, 68–76 (2010)

    Article  Google Scholar 

  24. Lee S., Kim D., Bryant M.D., Ling F.F.: A micro corona motor. Sens. Actuators A Phys. 118, 226–232 (2005)

    Article  Google Scholar 

  25. Tsai, N.C., Liou, J.S., Lin, C.C., Li, T.: Analysis and fabrication of reciprocal motors applied for microgyroscopes. J Micro/ Nanolithogr. MEMS MOEMS 8, 68–76 (2009)

    Google Scholar 

  26. Tsai N.C., Liou J.S., Lin C.C., Li T.: Suppression of dynamic offset of electromagnetic drive module for micro-gyroscope. Mech. Syst. Signal Process. 25, 680–693 (2011)

    Article  Google Scholar 

  27. Tsai N.C., Liou J.S., Lin C.C., Li T.: Collision prevention of eccentric proof mass applied for micro-gyroscope. Precis. Eng. 35, 133–142 (2011)

    Article  Google Scholar 

  28. Altan S., Aifantis E.: On the structure of the mode III crack-tip in gradient elasticity. Scripta Metallurgica Et Materialia 26, 319–324 (1992)

    Article  Google Scholar 

  29. Altan S., Aifantis E.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8, 231–282 (1997)

    Article  Google Scholar 

  30. Shodja M., Ahmadpoor H., Tehranchi F.: A calculation of the additional constants for fcc materials in second strain gradient elasticity: behavior of a nano-size Bernoulli–Euler beam with surface effects. J. Appl. Mech. 79, 21008 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Asghari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danesh, V., Asghari, M. Analysis of micro-rotating disks based on the strain gradient elasticity. Acta Mech 225, 1955–1965 (2014). https://doi.org/10.1007/s00707-013-1031-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1031-y

Keywords

Navigation