Skip to main content
Log in

Experiments on two immiscible fluids in spherical Couette flow

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper deals with the experimental instabilities analysis of spherical Couette flow. We consider the flow of two immiscible fluids superimposed between concentric spheres when the outer sphere is fixed and the inner one rotates. The working fluids have rather different viscosities and thus different Reynolds numbers. The obtained results are compared with a reference case of filled gap using one fluid (Γ max = 20). Experiments are performed for different aspect ratio values, and Laser photometric technique is used for visualization. Our analysis is mainly focused on the type of instabilities and their relationship with the laminar-turbulent transition regime. We intend to explore the combined effects of the aspect ratio and the interaction between the two superposed fluids on the appearance of different instability evolutions. The evolution of the phase velocity for different aspect ratio of heavy fluid Γ HF = H HF/d is presented. The immiscible fluids are separated by a liquid–liquid interface (water–oil). In order to control instability occurrence, Taylor number variation is presented versus aspect ratio. Instability phenomena are found to be the same as for the nominal case for large heavy fluid aspect ratios. The first equatorial symmetry breaking of the flow is observed for a critical value Γ c  = 13 where the Taylor vortex flow is introduced with three stationary cells. For the same aspect ratio, the interaction of the immiscible fluids leads to the appearance of gravitational waves near the equatorial zone. A surface cell, starting before the appearance of Taylor vortices, is detected in the light fluid for low aspect ratios. This cell of Ekman type has not been observed before, to our best knowledge, in spherical Couette flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bratukhin I.U.K.: On the evaluation of the critical Reynolds number for the flow between two rotating spherical surface. J. Appl. Math. Mech. 25, 1286–1299 (1961)

    Article  MathSciNet  Google Scholar 

  2. Khlebutin G.N.: Stability of fluid motion between a rotating and a stationary concentric sphere. Fluids Dyn. 3, 31–32 (1968)

    Article  Google Scholar 

  3. Sawatzti O., Zierep J.: Das Stromungsfeld um eine rotierende Kugel. Acta. Mech. 9, 159 (1970)

    Article  Google Scholar 

  4. Munson B.R., Joseph D.D.: Viscous incompressible flow between concentric rotating spheres. Part 1: Basic flow. J. Fluids Mech. 49, 289–303 (1971)

    Article  MATH  Google Scholar 

  5. Munson B.R., Joseph D.D.: Viscous incompressible flow between concentric rotating spheres. Part 2: Hydrodynamic instability. J. Fluids Mech. 49, 305–318 (1971)

    Article  MATH  Google Scholar 

  6. Menguturk M., Munson B.R.: Experimental results for low Reynolds number flow between eccentric rotating spheres. Phys. Fluids 18, 128–129 (1975)

    Article  Google Scholar 

  7. Wimmer M.: Experiments on a viscous fluid flow between rotating spheres. J. Fluid Mech. 78, 317–335 (1976)

    Article  Google Scholar 

  8. Wimmer M.: Viscous flows and instabilities near rotating bodies. Prop. Aerosp. Sci. 25, 43–103 (1988)

    Article  Google Scholar 

  9. Schrauf G.: The first instability in spherical Taylor–Couette flow. J. Fluid Mech. 166, 287–303 (1986)

    Article  MATH  Google Scholar 

  10. Marcus P., Tukerman L.S.: Simulation of flow between concentric rotating spheres. Part 1: Steady states. J. Fluid Mech. 185, 1–30 (1987)

    Article  MATH  Google Scholar 

  11. Marcus P., Tukerman L.S.: Simulation of flow between concentric spheres. Part 2: Transitions. J. Fluid Mech. 185, 31–65 (1987)

    Article  MATH  Google Scholar 

  12. Nakabayashi K.: Transition of Taylor–Gortler vortex flow in spherical Couette flow. J. Fluid Mech. 132, 209–230 (1983)

    Article  Google Scholar 

  13. Yavorskaya, I.M., Belyaev, Y.N., Monakhov, A.A., Astaf’eva, N.M., Scherbakov, S.A., Vvdenskaya, N.D.: Stability, non-uniqueness and transition to turbulence in the flow between two rotating spheres. In: Theoretical and applied mechanics. In: Proceedings of the Fifteenth International Congress, Toronto, Canada, August 17–23, (A82-12401 02-39). North-Holland Publishing Co., Amsterdam, pp. 431–443 (1980)

  14. Bühler K.: Symmetric and asymmetric Taylor vortex flow in spherical gaps. Acta Mech. 81, 3–38 (1990)

    Article  MathSciNet  Google Scholar 

  15. Egbers C., Rath H.G.: The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow. Acta Mech. 111, 125–140 (1995)

    Article  Google Scholar 

  16. Mamun C.K., Tuckerman L.S.: Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 7, 80–91 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hollerbach R., Junk M., Egbers C.: Non-axisymmetric instabilities in basic state spherical Couette flow. Fluid Dyn. Res. 38, 257–273 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bühler K.: Spherical Couette flow with superimposed throughflow. LNP 549, 256–268 (2000)

    Google Scholar 

  19. Bühler K.: Pattern formation in rotating. Fluids J. Therm. Sci. 18, 109–118 (2009)

    Article  Google Scholar 

  20. Douglass R.W., Munson B.R., Shaughnessy E.J.: Thermal convection in rotating spherical Annuli-1 forced convection. Int. J. Heat Mass Transf. 21, 1543–1553 (1978)

    Article  MATH  Google Scholar 

  21. Liu M., Egbers C., Rath H.J.: Three-dimensional finite amplitude thermal convection in a spherical shell. Adv. Space Res 16, 105–108 (1995)

    Article  MATH  Google Scholar 

  22. Loukopoulos V.C.: Taylor vortices in annular heated spherical flow at medium and large aspect ratios. Phys. Fluids 17, 018108 (2005)

    Article  Google Scholar 

  23. Yamaguchi H., Fujiyoshi J., Matsui H.: Spherical Couette flow of a viscoelastic fluid. Part I: Experimental study of the inner sphere rotation. J. Non-Newtonian Fluid Mech. 6, 29–46 (1997)

    Article  Google Scholar 

  24. Yamaguchi H., Matsui H.: Spherical Couette flow of a viscoelastic fluid. Part II: Numerical study for the inner sphere rotation. J. Non-Newtonian Fluid Mech. 69, 47–70 (1997)

    Article  Google Scholar 

  25. Yamaguchi H., Nishiguchi B.: Spherical Couette flow of a viscoelastic fluid. Part III: A study of outer sphere rotation. J. Non-Newtonian Fluid Mech. 84, 45–64 (1999)

    Article  MATH  Google Scholar 

  26. Hollerbach R., Canet E., Fournier A.: Spherical Couette flow in a dipolar magnetic field. Eur. J. Mech. B 26, 729–737 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Travnikov V., Eckert K., Odenbach S.: Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths. Acta Mech. 219, 255–268 (2011)

    Article  MATH  Google Scholar 

  28. Gissinger C., Ji H., Goodman J.: Instabilities in magnetized spherical Couette flow. Phys. Rev. E 026308, 84 (2011)

    Google Scholar 

  29. Figueroa N., Schaeffer N., Nataf H.C., Schmitt D.: Modes and instabilities in magnetized spherical Couette flow. J. Fluid Mech. 716, 445–469 (2013)

    Article  MathSciNet  Google Scholar 

  30. Gelfgat A.Y., Yarin A.L., Bar-Yoseph P.Z., Graham M.D., Bai G.: Numerical modeling of two-fluid Taylor–Couette flow with deformable capillary liquid–liquid interface. Phys. Fluids 16, 4066–4074 (2004)

    Article  Google Scholar 

  31. Walton I.C.: The linear stability of the flow in a narrow spherical annulus. J. Fluid Mech. 86, 673–693 (1978)

    Article  MATH  Google Scholar 

  32. Mahamdia, A.: Hydrodynamique des écoulements tournants. Application au mouvement de Taylor–Couette en Géométrie finie. Thèse de Doctorat ès sciences, USTHB (2005)

  33. Bouabdallah, A.: Instabilités et turbulence dans l’écoulement de Taylor–Couette. Thèse de doctorat es sciences, INPL, Nancy, France (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Tigrine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tigrine, Z., Mokhtari, F., Bouabdallah, A. et al. Experiments on two immiscible fluids in spherical Couette flow. Acta Mech 225, 233–242 (2014). https://doi.org/10.1007/s00707-013-0960-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0960-9

Keywords

Navigation