Skip to main content
Log in

On fractional order generalized thermoelasticity with micromodeling

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents the theory of fractional order generalized thermoelasticity with microstructure modeling for porous elastic bodies and synthetic materials containing microscopic components and microcracks. Built upon the micromorphic theory, the theory of fractional order generalized micromorphic thermoelasticity (FOGTEmm) is firstly established by introducing the fractional integral operator. To generalize the FOGTEmm theory, the general forms of the extended thermoelasticity, temperature rate dependent thermoelasticity, thermoelasticity without energy dissipation, thermoelasticity with energy dissipation, and dual-phase-lag thermoelasticity are introduced during the formulation. Secondly, the uniqueness theorem for FOGTEmm is established. Finally, a generalized variational principle of FOGTEmm is developed by using the semi-inverse method. For reference, the theories of fractional order generalized micropolar thermoelasticity (FOGTEmp) and microstretch thermoelasticity (FOGTEms) and the corresponding generalized variational theorems are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord H., Shulman Y.: A generalized dynamic theory of thermoelasticity. J. Mech. Phys. Solids. 15, 299 (1967)

    Article  MATH  Google Scholar 

  2. Green A., Lindsay K.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  3. Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Green A.E., Naghdi P.M.: A reexamination of the basic results of thermomechanics. Proc. Roy. Soc. Lond. A 432, 171–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Green A.E., Naghdi P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15, 252–264 (1992)

    Article  MathSciNet  Google Scholar 

  6. Youssef H.M.: Theory of two-temperature generalized thermoelasticity. IMA J. Appl. Math. 71, 1–8 (2006)

    Article  MathSciNet  Google Scholar 

  7. Hetnarski R.B., Ignaczak J.: Generalized thermoelasticity: closed form solutions. J. Therm. Stresses 16, 473–498 (1993)

    Article  MathSciNet  Google Scholar 

  8. Hetnarski R.B., Ignaczak J.: Generalized thermoelasticity: response of semi-space to a short laser pulse. J. Therm. Stresses 17, 377–396 (1994)

    Article  MathSciNet  Google Scholar 

  9. Tzou D.Y.: A unified field approach for heat conduction from macro to micro scales. ASME J. Heat Trans. 117, 8–16 (1995)

    Article  Google Scholar 

  10. Roychoudhuri S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30, 231–238 (2007)

    Article  Google Scholar 

  11. Youssef H.M.: Theory of fractional order generalized thermoelasticity. ASME J. Heat Trans. 132, 6 (2010)

    Article  Google Scholar 

  12. Youssef H.M.: Variational principle of fractional order generalized thermoelasticity. Appl. Math. Lett. 23, 1183–1187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Youssef H.M.: Two-dimensional thermal shock problem of fractional order generalized thermoelasticity. Acta. Mech. 223, 1219–1231 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Youssef H.M., Al-Lehaibi E.A.: Fractional order generalized thermoelastic half-space subjected to ramp-type heating. Mech. Res. Commun. 37, 448–452 (2010)

    Article  MATH  Google Scholar 

  15. Abouelregal A.E.: Fractional order generalized thermo-piezoelectric semi-infinite medium with temperature-dependent properties subjected to a ramp-type heating. J. Therm. Stresses 34, 1139–1155 (2011)

    Article  Google Scholar 

  16. Lee J.D., Wang X.Q.: Generalized Micromorphic solids and fluids. Int. J. Eng. Sci. 49, 1378–1387 (2011)

    Article  MathSciNet  Google Scholar 

  17. Lee J.D., Chen Y.P.: Electromagnetic wave propagation in micromorphic elastic solids. Int. J. Eng. Sci. 42, 841–848 (2004)

    Article  Google Scholar 

  18. Cosserat E., Cosserat F.: Theories Des Corps Deformable. Hermann, Paris (1909)

    Google Scholar 

  19. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eringen, A.C.: Mechanics of micromorphic materials. In: Gortler, H. (eds) Proceedings of 11th International Congress of Application Mechanics, Springer, New York (1964)

  21. Mindlin R.D.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eringen, A.C.: Theory of micropolar continua. In: Proceedings of the Ninth Midwestern Mechanics Conference. Wisconsin, 16–18 August, Wiley, New York (1965)

  23. Eringen A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  25. Wang X.Q., Lee J.D.: Micromorphic theory: a gateway to nano world. Int. J. Smart Nano Mater. 1, 115–135 (2010)

    Article  MATH  Google Scholar 

  26. Lee J.D., Chen Y.: Material forces in micromorphic thermoelastic solids. Philos. Mag. 85, 3897–3910 (2005)

    Article  Google Scholar 

  27. Eringen A.C.: Theory of micromorphic materials with memory. Int. J. Eng. Sci. 10, 623 (1972)

    Article  MATH  Google Scholar 

  28. Lee J.D., Chen Y.P.: Constitutive relations of micromorphic thermoplasticity. Int. J. Eng. Sci. 41, 387–399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Iesan D.: On the micromorphic thermoelasticity. Int. J. Eng. Sci. 40, 549–567 (2002)

    Article  MathSciNet  Google Scholar 

  30. Iesan D.: Micromorphic elastic solids with initial stresses and initial heat flux. Int. J. Eng. Sci. 49, 1350–1356 (2011)

    Article  MathSciNet  Google Scholar 

  31. Nappa L.: Variational principles in micromorphic thermoelasticity. Mech. Res. Commun. 28, 405–412 (2001)

    Article  MATH  Google Scholar 

  32. Eringen A.C., Suhubi E.: Nonlinear theory of micro elastic solids I. Int. J. Eng. Sci. 2, 180–203 (1964)

    Google Scholar 

  33. Eringen A.C., Suhubi E.: Nonlinear theory of micro elastic solids II. Int. J. Eng. Sci. 2, 389–404 (1964)

    Article  MathSciNet  Google Scholar 

  34. Eringen A.C.: Linear Theory of Micropolar Elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  35. Kadowaki H.S., Liu W.K.: A multiscale approach for the micropolar continuum model. CMES Comp. Model. Enh. 7, 269–282 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Diebels S.: A micropolar theory of porous media: constitutive modeling. Trans. Porous Med. 34, 193–208 (1999)

    Article  Google Scholar 

  37. Eringen A.C.: Foundations of Micropolar Thermoelasticity. Springer, Berlin (1970)

    MATH  Google Scholar 

  38. Nowacki W.: Couple stress in the theory of thermoelasticity. Bull. Acad. Pol. Sci. Tech. 14, 97–106 (1966)

    Google Scholar 

  39. Iesan D.: On the plane coupled micropolar thermoelasticity. Bull. Acad. Pol. Sci. Tech. 16, 379–384 (1968)

    Google Scholar 

  40. Passarella F., Zampoli V.: Reciprocal and variational principles in micropolar thermoelasticity of type II. Acta. Mech. 216, 29–36 (2011)

    Article  MATH  Google Scholar 

  41. Boschi E., Iesan D.: A generalized theory of linear micropolar thermoelasticity. Meccanica 8, 154–157 (1973)

    Article  MATH  Google Scholar 

  42. Sherief H.H., Hamza F.A., El-Sayed A.M.: Theory of generalized micropolar thermoelasticity and axisymmetric half space problem. J. Therm. Stresses 28, 409–437 (2005)

    Article  MathSciNet  Google Scholar 

  43. Ezzat M.A., Awad E.S.: Constitutive relations, uniqueness of solution, and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures. J. Therm. Stresses 33, 226–250 (2010)

    Article  Google Scholar 

  44. Othman M.I.A., Singh B.: The effect of rotation on generalized micropolar thermoelasticity for a half-space under five theories. Int. J. Solids Struct. 44, 2748–2762 (2007)

    Article  MATH  Google Scholar 

  45. Eringen A.C.: Electromagnetic theory of microstretch elasticity and bone modeling. Int. J. Eng. Sci. 42, 231–242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Cicco S.D., Nappa L.: On the theory of thermomicrostretch elastic solids. J. Therm. Stresses 22, 565–580 (1999)

    Article  Google Scholar 

  47. Aouadi M.: Some theorems in the isotropic theory of microstretch thermoelasticity with microtemperatures. J. Therm. Stresses 31, 649–662 (2008)

    Article  Google Scholar 

  48. Othman M.I.A., Lotfy K., Farouk R.M.: Generalized thermo-microstretch elastic medium with temperature dependent properties for different theories. Eng. Anal. Bound. Elem. 34, 229–237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Othman M.I.A., Lotfy K.: On the plane waves of generalized thermo-microstretch elastic half-space under three theories. Int. Commun. Heat Mass 37, 192–200 (2010)

    Article  Google Scholar 

  50. Aouadi M.: Thermomechanical interactions in a generalized thermo-microstretch elastic half space. J. Therm. Stresses 29, 511–528 (2006)

    Article  Google Scholar 

  51. Podlubny I.: Fractional Differential Equations. Academic, New York (1999)

    MATH  Google Scholar 

  52. Mainardi F., Gorenflo R.: On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118, 283–299 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ghazizadeh H.R., Azimi A., Maerefat M.: An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation. Int. J. Heat Mass Transfer 55, 2095–2101 (2009)

    Article  Google Scholar 

  54. Mitra K., Kumar A., Vedavarz A., Moallemi M.K.: Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. Trans. ASME 117, 568–573 (1995)

    Article  Google Scholar 

  55. He J.H.: Generalized variational principles for thermopiezoelectricity. Arch. Appl. Mech. 72, 248–256 (2002)

    Article  MATH  Google Scholar 

  56. Gales C.: Some results in micromorphic piezoelectricity. Eur. J. Mech. A-Solid 31, 37–46 (2012)

    Article  MathSciNet  Google Scholar 

  57. Ciarletta M., Scarpetta E.: Some results on thermoelasticity for porous piezoelectric materials. Mech. Res. Commun. 23, 1–10 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  58. He J.H.: Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo. Jet. Eng. 14, 23–28 (1997)

    Google Scholar 

  59. Iesan D., Pompei A.: On the equilibrium theory of microstretch elastic solids. Int. J. Eng. Sci. 33, 399–410 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Geng Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y.J., Tian, X.G. & Lu, T.J. On fractional order generalized thermoelasticity with micromodeling. Acta Mech 224, 2911–2927 (2013). https://doi.org/10.1007/s00707-013-0913-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0913-3

Keywords

Navigation